69 Commits

Author SHA1 Message Date
Dipika Sikka
ca3ea51bde
[Kernel] Dynamic Per-Token Activation Quantization (#5037)
Co-authored-by: Varun Sundar Rabindranath <varunsundar08@gmail.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-06-07 09:36:26 -07:00
Tyler Michael Smith
8d75fe48ca
[Kernel] Switch fp8 layers to use the CUTLASS kernels (#5183)
Switching from torch._scaled_mm to vLLM's cutlass fp8 kernels when supported as we are seeing 5-15% improvement in e2e performance on neuralmagic/Meta-Llama-3-8B-Instruct-FP8

see https://docs.google.com/spreadsheets/d/1GiAnmzyGHgZ6zL_LDSTm35Bdrt4A8AaFEurDlISYYA4/ for some quick e2e benchmarks and #5144 for comparisons across different GEMM sizes.
2024-06-07 08:42:35 +00:00
Jie Fu (傅杰)
15063741e3
[Misc] Missing error message for custom ops import (#5282) 2024-06-06 20:17:21 -07:00
Tyler Michael Smith
cbb2f59cc8
[Kernel] Pass a device pointer into the quantize kernel for the scales (#5159) 2024-06-03 09:52:30 -07:00
Eric Xihui Lin
8e192ff967
[Kernel][Backend][Model] Blocksparse flash attention kernel and Phi-3-Small model (#4799)
Co-authored-by: beagleski <yunanzhang@microsoft.com>
Co-authored-by: bapatra <bapatra@microsoft.com>
Co-authored-by: Barun Patra <codedecde@users.noreply.github.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-05-24 22:00:52 -07:00
Dipika Sikka
a1242324c9
[Kernel] Initial Activation Quantization Support (#4525)
Co-authored-by: Varun Sundar Rabindranath <varunsundar08@gmail.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-05-23 21:29:18 +00:00
Tyler Michael Smith
2060e93659
[Kernel] Add w8a8 CUTLASS kernels (#4749) 2024-05-16 18:32:50 -04:00
Alexander Matveev
6979ade384
Add GPTQ Marlin 2:4 sparse structured support (#4790)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-05-16 12:56:15 -04:00
Kunshang Ji
64b77dfd7e
[Core]fix type annotation for swap_blocks (#4726) 2024-05-10 21:52:48 +09:00
Cody Yu
c833101740
[Kernel] Refactor FP8 kv-cache with NVIDIA float8_e4m3 support (#4535) 2024-05-09 18:04:17 -06:00
Philipp Moritz
379da6dcb5
[Kernel] [FP8] Improve FP8 linear layer performance (#4691)
This PR improves the FP8 performance of linear layers, which had been lacking before (#4118 (comment) and #4118 (comment)).

We noticed that CUBLASLt can find a better algorithm if the first dimension of the matrix is greater than 16. So this PR enlarges matrices appropriately during quantization. This improves FP8 performance and removes the performance regression vs. FP16, in many cases exceeding FP16 performance.

Here are benchmarks on llama3 70b (ITL numbers for 1000 input and 50 output tokens at fixed qps and at TP 4), all FP8 measurements are for dynamic quantization:

qps = 1: 24 ms (FP8, this PR), 32 ms (FP8, previous main), 26 ms (FP16)
qps = 2: 26 ms (FP8, this PR), 34ms (FP8, previous main), 28 ms (FP16) 
qps = 4: 33 ms (FP8, this PR), 44 ms (FP8, previous main), 36 ms (FP16)
qps = 6: 46 ms (FP8, this PR), 56 ms (FP8, previous main), 54 ms (FP16)
qps = 8: 85 ms (FP8, this PR), 85 ms (FP8, previous main), 138 ms (FP16)
2024-05-09 16:38:07 -07:00
Lily Liu
43c413ec57
[Kernel] Use flashinfer for decoding (#4353)
Co-authored-by: LiuXiaoxuanPKU <llilyliupku@gmail.com>
2024-05-03 15:51:27 -07:00
SangBin Cho
3521ba4f25
[Core][Model runner refactoring 1/N] Refactor attn metadata term (#4518) 2024-05-03 10:20:12 -07:00
alexm-nm
7038e8b803
[Kernel] Support running GPTQ 8-bit models in Marlin (#4533) 2024-05-02 12:56:22 -04:00
Kunshang Ji
26f2fb5113
[Core]Refactor gptq_marlin ops (#4466) 2024-04-30 08:14:47 -04:00
Philipp Moritz
12628d3c78
[Kernel] Optimize FP8 support for MoE kernel / Mixtral via static scales (#4343)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-27 04:49:59 +00:00
Kunshang Ji
f4bc4de1b1
[Core]refactor aqlm quant ops (#4351) 2024-04-25 15:03:56 -04:00
Philipp Moritz
eace8bf0b9
[Kernel] FP8 support for MoE kernel / Mixtral (#4244)
This PR is the first step towards fixing https://github.com/vllm-project/vllm/pull/3208

It implements dynamic per-tensor scaling (see https://github.com/vllm-project/vllm/pull/4118), so users do not need to compute activation scales on a calibration dataset and they also don't need to convert their model checkpoints. It is enough to specify the `quantization="fp8"` argument. You can try out the PR like this:

```python
from vllm import LLM, SamplingParams

prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="mistralai/Mixtral-8x7B-Instruct-v0.1", tensor_parallel_size=2, quantization="fp8")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```

**Performance**: For this PR, the focus is on making the code clean (while still trying to get reasonable performance), there is a bunch of optimizations that we will submit as a follow up PR that significantly improve the performance (similar to the numbers in https://github.com/vllm-project/vllm/pull/3954). With this PR, the results are as follows:

<img width="725" alt="Screenshot 2024-04-21 at 1 31 50 PM" src="https://github.com/vllm-project/vllm/assets/113316/d8fe1118-07a0-4d4e-8530-37a77d465a03">


**Accuracy**: The accuracy with this PR on MMLU on `mistralai/Mixtral-8x7B-v0.1` is as follows:

```
|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.7018|±  |0.0036|
| - humanities     |N/A    |none  |     5|acc   |0.6472|±  |0.0065|
| - other          |N/A    |none  |     5|acc   |0.7673|±  |0.0072|
| - social_sciences|N/A    |none  |     5|acc   |0.8099|±  |0.0070|
| - stem           |N/A    |none  |     5|acc   |0.6131|±  |0.0083|
```
this compares favorably with the fp16 results which are
```
|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.7020|±  |0.1313|
| - humanities     |N/A    |none  |     5|acc   |0.6425|±  |0.1349|
| - other          |N/A    |none  |     5|acc   |0.7744|±  |0.1038|
| - social_sciences|N/A    |none  |     5|acc   |0.8131|±  |0.0695|
| - stem           |N/A    |none  |     5|acc   |0.6108|±  |0.1383|
```

Happy hacking!
2024-04-24 01:18:23 +00:00
Kunshang Ji
e9da5a40c6
[Misc] Add indirection layer for custom ops (#3913) 2024-04-10 20:26:07 -07:00