# The vLLM Dockerfile is used to construct vLLM image that can be directly used # to run the OpenAI compatible server. # Please update any changes made here to # docs/contributing/dockerfile/dockerfile.md and # docs/assets/contributing/dockerfile-stages-dependency.png ARG CUDA_VERSION=12.9.1 ARG PYTHON_VERSION=3.12 # By parameterizing the base images, we allow third-party to use their own # base images. One use case is hermetic builds with base images stored in # private registries that use a different repository naming conventions. # # Example: # docker build --build-arg BUILD_BASE_IMAGE=registry.acme.org/mirror/nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 # Important: We build with an old version of Ubuntu to maintain broad # compatibility with other Linux OSes. The main reason for this is that the # glibc version is baked into the distro, and binaries built with one glibc # version are not backwards compatible with OSes that use an earlier version. ARG BUILD_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 # Using cuda base image with minimal dependencies necessary for JIT compilation (FlashInfer, DeepGEMM, EP kernels) ARG FINAL_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-base-ubuntu22.04 # By parameterizing the Deadsnakes repository URL, we allow third-party to use # their own mirror. When doing so, we don't benefit from the transparent # installation of the GPG key of the PPA, as done by add-apt-repository, so we # also need a URL for the GPG key. ARG DEADSNAKES_MIRROR_URL ARG DEADSNAKES_GPGKEY_URL # The PyPA get-pip.py script is a self contained script+zip file, that provides # both the installer script and the pip base85-encoded zip archive. This allows # bootstrapping pip in environment where a dsitribution package does not exist. # # By parameterizing the URL for get-pip.py installation script, we allow # third-party to use their own copy of the script stored in a private mirror. # We set the default value to the PyPA owned get-pip.py script. # # Reference: https://pip.pypa.io/en/stable/installation/#get-pip-py ARG GET_PIP_URL="https://bootstrap.pypa.io/get-pip.py" # PIP supports fetching the packages from custom indexes, allowing third-party # to host the packages in private mirrors. The PIP_INDEX_URL and # PIP_EXTRA_INDEX_URL are standard PIP environment variables to override the # default indexes. By letting them empty by default, PIP will use its default # indexes if the build process doesn't override the indexes. # # Uv uses different variables. We set them by default to the same values as # PIP, but they can be overridden. ARG PIP_INDEX_URL ARG PIP_EXTRA_INDEX_URL ARG UV_INDEX_URL=${PIP_INDEX_URL} ARG UV_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL} # PyTorch provides its own indexes for standard and nightly builds ARG PYTORCH_CUDA_INDEX_BASE_URL=https://download.pytorch.org/whl # PIP supports multiple authentication schemes, including keyring # By parameterizing the PIP_KEYRING_PROVIDER variable and setting it to # disabled by default, we allow third-party to use keyring authentication for # their private Python indexes, while not changing the default behavior which # is no authentication. # # Reference: https://pip.pypa.io/en/stable/topics/authentication/#keyring-support ARG PIP_KEYRING_PROVIDER=disabled ARG UV_KEYRING_PROVIDER=${PIP_KEYRING_PROVIDER} # Flag enables built-in KV-connector dependency libs into docker images ARG INSTALL_KV_CONNECTORS=false #################### BASE BUILD IMAGE #################### # prepare basic build environment FROM ${BUILD_BASE_IMAGE} AS base ARG CUDA_VERSION ARG PYTHON_VERSION ARG TARGETPLATFORM ARG INSTALL_KV_CONNECTORS=false ENV DEBIAN_FRONTEND=noninteractive ARG GET_PIP_URL # Install system dependencies and uv, then create Python virtual environment RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \ && echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \ && apt-get update -y \ && apt-get install -y --no-install-recommends \ ccache \ software-properties-common \ git \ curl \ sudo \ python3-pip \ libibverbs-dev \ # Upgrade to GCC 10 to avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92519 # as it was causing spam when compiling the CUTLASS kernels gcc-10 \ g++-10 \ && update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 110 --slave /usr/bin/g++ g++ /usr/bin/g++-10 \ && rm -rf /var/lib/apt/lists/* \ && curl -LsSf https://astral.sh/uv/install.sh | sh \ && $HOME/.local/bin/uv venv /opt/venv --python ${PYTHON_VERSION} \ && rm -f /usr/bin/python3 /usr/bin/python3-config /usr/bin/pip \ && ln -s /opt/venv/bin/python3 /usr/bin/python3 \ && ln -s /opt/venv/bin/python3-config /usr/bin/python3-config \ && ln -s /opt/venv/bin/pip /usr/bin/pip \ && python3 --version && python3 -m pip --version ARG PIP_INDEX_URL UV_INDEX_URL ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL ARG PYTORCH_CUDA_INDEX_BASE_URL ARG PIP_KEYRING_PROVIDER UV_KEYRING_PROVIDER # Activate virtual environment and add uv to PATH ENV PATH="/opt/venv/bin:/root/.local/bin:$PATH" ENV VIRTUAL_ENV="/opt/venv" # This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out # Reference: https://github.com/astral-sh/uv/pull/1694 ENV UV_HTTP_TIMEOUT=500 ENV UV_INDEX_STRATEGY="unsafe-best-match" # Use copy mode to avoid hardlink failures with Docker cache mounts ENV UV_LINK_MODE=copy RUN <> /etc/environment # Install Python and other dependencies RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \ && echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \ && apt-get update -y \ && apt-get install -y --no-install-recommends \ software-properties-common \ curl \ sudo \ python3-pip \ ffmpeg \ libsm6 \ libxext6 \ libgl1 \ && if [ ! -z ${DEADSNAKES_MIRROR_URL} ] ; then \ if [ ! -z "${DEADSNAKES_GPGKEY_URL}" ] ; then \ mkdir -p -m 0755 /etc/apt/keyrings ; \ curl -L ${DEADSNAKES_GPGKEY_URL} | gpg --dearmor > /etc/apt/keyrings/deadsnakes.gpg ; \ sudo chmod 644 /etc/apt/keyrings/deadsnakes.gpg ; \ echo "deb [signed-by=/etc/apt/keyrings/deadsnakes.gpg] ${DEADSNAKES_MIRROR_URL} $(lsb_release -cs) main" > /etc/apt/sources.list.d/deadsnakes.list ; \ fi ; \ else \ for i in 1 2 3; do \ add-apt-repository -y ppa:deadsnakes/ppa && break || \ { echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \ done ; \ fi \ && apt-get update -y \ && apt-get install -y --no-install-recommends \ python${PYTHON_VERSION} \ python${PYTHON_VERSION}-dev \ python${PYTHON_VERSION}-venv \ libibverbs-dev \ && rm -rf /var/lib/apt/lists/* \ && update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \ && update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \ && ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \ && curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION} \ && python3 --version && python3 -m pip --version # Install CUDA development tools and build essentials for runtime JIT compilation # (FlashInfer, DeepGEMM, EP kernels all require compilation at runtime) RUN CUDA_VERSION_DASH=$(echo $CUDA_VERSION | cut -d. -f1,2 | tr '.' '-') && \ apt-get update -y && \ apt-get install -y --no-install-recommends \ cuda-nvcc-${CUDA_VERSION_DASH} \ cuda-cudart-${CUDA_VERSION_DASH} \ cuda-nvrtc-${CUDA_VERSION_DASH} \ cuda-cuobjdump-${CUDA_VERSION_DASH} \ libcublas-${CUDA_VERSION_DASH} && \ rm -rf /var/lib/apt/lists/* ARG PIP_INDEX_URL UV_INDEX_URL ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL ARG PYTORCH_CUDA_INDEX_BASE_URL ARG PIP_KEYRING_PROVIDER UV_KEYRING_PROVIDER # Install uv for faster pip installs RUN --mount=type=cache,target=/root/.cache/uv \ python3 -m pip install uv # This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out # Reference: https://github.com/astral-sh/uv/pull/1694 ENV UV_HTTP_TIMEOUT=500 ENV UV_INDEX_STRATEGY="unsafe-best-match" # Use copy mode to avoid hardlink failures with Docker cache mounts ENV UV_LINK_MODE=copy # Workaround for https://github.com/openai/triton/issues/2507 and # https://github.com/pytorch/pytorch/issues/107960 -- hopefully # this won't be needed for future versions of this docker image # or future versions of triton. RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/ # Install vllm wheel first, so that torch etc will be installed. RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \ --mount=type=cache,target=/root/.cache/uv \ uv pip install --system dist/*.whl --verbose \ --extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.') # Install FlashInfer pre-compiled kernel cache and binaries # https://docs.flashinfer.ai/installation.html RUN --mount=type=cache,target=/root/.cache/uv \ uv pip install --system flashinfer-cubin==0.5.3 \ && uv pip install --system flashinfer-jit-cache==0.5.3 \ --extra-index-url https://flashinfer.ai/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.') \ && flashinfer show-config COPY examples examples COPY benchmarks benchmarks COPY ./vllm/collect_env.py . RUN --mount=type=cache,target=/root/.cache/uv \ . /etc/environment && \ uv pip list # Install deepgemm wheel that has been built in the `build` stage RUN --mount=type=cache,target=/root/.cache/uv \ --mount=type=bind,from=build,source=/tmp/deepgemm/dist,target=/tmp/deepgemm/dist,ro \ sh -c 'if ls /tmp/deepgemm/dist/*.whl >/dev/null 2>&1; then \ uv pip install --system /tmp/deepgemm/dist/*.whl; \ else \ echo "No DeepGEMM wheels to install; skipping."; \ fi' # Pytorch now installs NVSHMEM, setting LD_LIBRARY_PATH (https://github.com/pytorch/pytorch/blob/d38164a545b4a4e4e0cf73ce67173f70574890b6/.ci/manywheel/build_cuda.sh#L141C14-L141C36) ENV LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH # Install EP kernels wheels (pplx-kernels and DeepEP) that have been built in the `build` stage RUN --mount=type=bind,from=build,src=/tmp/ep_kernels_workspace/dist,target=/vllm-workspace/ep_kernels/dist \ --mount=type=cache,target=/root/.cache/uv \ uv pip install --system ep_kernels/dist/*.whl --verbose \ --extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.') RUN --mount=type=bind,source=tools/install_gdrcopy.sh,target=/tmp/install_gdrcopy.sh,ro \ set -eux; \ case "${TARGETPLATFORM}" in \ linux/arm64) UUARCH="aarch64" ;; \ linux/amd64) UUARCH="x64" ;; \ *) echo "Unsupported TARGETPLATFORM: ${TARGETPLATFORM}" >&2; exit 1 ;; \ esac; \ /tmp/install_gdrcopy.sh "${GDRCOPY_OS_VERSION}" "${GDRCOPY_CUDA_VERSION}" "${UUARCH}" # CUDA image changed from /usr/local/nvidia to /usr/local/cuda in 12.8 but will # return to /usr/local/nvidia in 13.0 to allow container providers to mount drivers # consistently from the host (see https://github.com/vllm-project/vllm/issues/18859). # Until then, add /usr/local/nvidia/lib64 before the image cuda path to allow override. ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib64:${LD_LIBRARY_PATH} #################### vLLM installation IMAGE #################### #################### TEST IMAGE #################### # image to run unit testing suite # note that this uses vllm installed by `pip` FROM vllm-base AS test ADD . /vllm-workspace/ ARG PYTHON_VERSION ARG PIP_INDEX_URL UV_INDEX_URL ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL ARG PYTORCH_CUDA_INDEX_BASE_URL # This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out # Reference: https://github.com/astral-sh/uv/pull/1694 ENV UV_HTTP_TIMEOUT=500 ENV UV_INDEX_STRATEGY="unsafe-best-match" # Use copy mode to avoid hardlink failures with Docker cache mounts ENV UV_LINK_MODE=copy RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \ && echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \ && apt-get update -y \ && apt-get install -y git # install development dependencies (for testing) RUN --mount=type=cache,target=/root/.cache/uv \ CUDA_MAJOR="${CUDA_VERSION%%.*}"; \ if [ "$CUDA_MAJOR" -ge 12 ]; then \ uv pip install --system -r requirements/dev.txt \ --extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \ fi # install development dependencies (for testing) RUN --mount=type=cache,target=/root/.cache/uv \ uv pip install --system -e tests/vllm_test_utils # enable fast downloads from hf (for testing) RUN --mount=type=cache,target=/root/.cache/uv \ uv pip install --system hf_transfer ENV HF_HUB_ENABLE_HF_TRANSFER 1 # Copy in the v1 package for testing (it isn't distributed yet) COPY vllm/v1 /usr/local/lib/python${PYTHON_VERSION}/dist-packages/vllm/v1 # Source code is used in the `python_only_compile.sh` test # We hide it inside `src/` so that this source code # will not be imported by other tests RUN mkdir src RUN mv vllm src/vllm #################### TEST IMAGE #################### #################### OPENAI API SERVER #################### # base openai image with additional requirements, for any subsequent openai-style images FROM vllm-base AS vllm-openai-base ARG TARGETPLATFORM ARG INSTALL_KV_CONNECTORS=false ARG PIP_INDEX_URL UV_INDEX_URL ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL # This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out # Reference: https://github.com/astral-sh/uv/pull/1694 ENV UV_HTTP_TIMEOUT=500 # install additional dependencies for openai api server RUN --mount=type=cache,target=/root/.cache/uv \ --mount=type=bind,source=requirements/kv_connectors.txt,target=/tmp/kv_connectors.txt,ro \ if [ "$INSTALL_KV_CONNECTORS" = "true" ]; then \ uv pip install --system -r /tmp/kv_connectors.txt; \ fi; \ if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \ BITSANDBYTES_VERSION="0.42.0"; \ else \ BITSANDBYTES_VERSION="0.46.1"; \ fi; \ uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' 'runai-model-streamer[s3,gcs]>=0.15.0' ENV VLLM_USAGE_SOURCE production-docker-image # define sagemaker first, so it is not default from `docker build` FROM vllm-openai-base AS vllm-sagemaker COPY examples/online_serving/sagemaker-entrypoint.sh . RUN chmod +x sagemaker-entrypoint.sh ENTRYPOINT ["./sagemaker-entrypoint.sh"] FROM vllm-openai-base AS vllm-openai ENTRYPOINT ["vllm", "serve"] #################### OPENAI API SERVER ####################