# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import pytest import vllm from vllm.lora.request import LoRARequest from ..utils import multi_gpu_test MODEL_PATH = "allenai/OLMoE-1B-7B-0125-Instruct" PROMPT_TEMPLATE = """I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request. " ##Instruction: candidate_poll contains tables such as candidate, people. Table candidate has columns such as Candidate_ID, People_ID, Poll_Source, Date, Support_rate, Consider_rate, Oppose_rate, Unsure_rate. Candidate_ID is the primary key. Table people has columns such as People_ID, Sex, Name, Date_of_Birth, Height, Weight. People_ID is the primary key. The People_ID of candidate is the foreign key of People_ID of people. ###Input: {context} ###Response:""" # noqa: E501 EXPECTED_LORA_OUTPUT = [ "SELECT count(*) FROM candidate", "SELECT count(*) FROM candidate", "SELECT poll_source FROM candidate GROUP BY poll_source ORDER BY count(*) DESC LIMIT 1", # noqa: E501 "SELECT poll_source FROM candidate GROUP BY poll_source ORDER BY count(*) DESC LIMIT 1", # noqa: E501 ] EXPECTED_BASE_MODEL_OUTPUT = [ "SELECT COUNT(Candidate_ID) FROM candidate", "SELECT COUNT(Candidate_ID) FROM candidate", "SELECT Candidate_ID, COUNT(*) as Total_Candidates\nFROM candidate\nINNER JOIN people ON candidate.People_ID = people.People_ID", # noqa: E501 "SELECT Candidate_ID, Poll_Source FROM candidate WHERE People_ID IN (SELECT People_ID FROM people) ORDER BY COUNT(*) DESC LIMIT 1", # noqa: E501 ] def generate_and_test( llm: vllm.LLM, lora_path: str, lora_id: list[int | None] | int | None, compare_lower: bool = False, ) -> None: prompts = [ PROMPT_TEMPLATE.format(context="How many candidates are there?"), PROMPT_TEMPLATE.format(context="Count the number of candidates."), PROMPT_TEMPLATE.format( context="Which poll resource provided the most number of candidate information?" # noqa: E501 ), PROMPT_TEMPLATE.format( context="Return the poll resource associated with the most candidates." ), ] lora_request = None if isinstance(lora_id, int): lora_request = LoRARequest(str(lora_id), lora_id, lora_path) elif isinstance(lora_id, list): lora_request = [ LoRARequest(str(i), i, lora_path) if i is not None else None for i in lora_id ] sampling_params = vllm.SamplingParams(temperature=0, max_tokens=64) outputs = llm.generate(prompts, sampling_params, lora_request=lora_request) # Print the outputs. generated_texts: list[str] = [] for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text.strip() generated_texts.append(generated_text) print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") for i in range(len(EXPECTED_LORA_OUTPUT)): req_lora_id = lora_id[i] if isinstance(lora_id, list) else lora_id generated_text = generated_texts[i] expected_output = ( EXPECTED_LORA_OUTPUT[i] if req_lora_id is not None else EXPECTED_BASE_MODEL_OUTPUT[i] ) if compare_lower: generated_text = generated_text.lower() expected_output = expected_output.lower() assert generated_text.startswith(expected_output) def test_olmoe_lora(olmoe_lora_files): # We enable enforce_eager=True here to reduce VRAM usage for lora-test CI, # Otherwise, the lora-test will fail due to CUDA OOM. llm = vllm.LLM( MODEL_PATH, max_model_len=1024, enable_lora=True, max_loras=4, enforce_eager=True, trust_remote_code=True, enable_chunked_prefill=True, ) generate_and_test(llm, olmoe_lora_files, lora_id=1) generate_and_test(llm, olmoe_lora_files, lora_id=2) def test_olmoe_lora_mixed(olmoe_lora_files): llm = vllm.LLM( MODEL_PATH, max_model_len=1024, enable_lora=True, max_loras=4, enforce_eager=True, trust_remote_code=True, enable_chunked_prefill=True, ) generate_and_test(llm, olmoe_lora_files, lora_id=[1, None, 3, None]) @pytest.mark.parametrize("fully_sharded_loras", [False, True]) @multi_gpu_test(num_gpus=2) def test_olmoe_lora_tp2(olmoe_lora_files, fully_sharded_loras): llm = vllm.LLM( MODEL_PATH, max_model_len=1024, enable_lora=True, max_loras=4, enforce_eager=True, trust_remote_code=True, enable_chunked_prefill=True, tensor_parallel_size=2, fully_sharded_loras=fully_sharded_loras, ) generate_and_test(llm, olmoe_lora_files, lora_id=1) generate_and_test(llm, olmoe_lora_files, lora_id=2) @pytest.mark.parametrize("fully_sharded_loras", [False, True]) @multi_gpu_test(num_gpus=4) def test_olmoe_lora_tp4(olmoe_lora_files, fully_sharded_loras): llm = vllm.LLM( MODEL_PATH, max_model_len=1024, enable_lora=True, max_loras=4, enforce_eager=True, trust_remote_code=True, enable_chunked_prefill=True, tensor_parallel_size=4, fully_sharded_loras=fully_sharded_loras, ) generate_and_test( llm, olmoe_lora_files, lora_id=1, compare_lower=fully_sharded_loras ) generate_and_test( llm, olmoe_lora_files, lora_id=2, compare_lower=fully_sharded_loras )