# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import asyncio from collections.abc import Mapping from typing import Any, Optional, Union, cast from typing_extensions import assert_never from vllm.config import ModelConfig from vllm.logger import init_logger from vllm.lora.request import LoRARequest from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalRegistry from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalEncDecInputs, MultiModalInputs) from vllm.prompt_adapter.request import PromptAdapterRequest from vllm.transformers_utils.tokenizer import AnyTokenizer from vllm.transformers_utils.tokenizer_group import TokenizerGroup from .data import (DecoderOnlyInputs, EmbedsInputs, EmbedsPrompt, EncoderDecoderInputs, ProcessorInputs, PromptType, SingletonInputs, SingletonPrompt, TextPrompt, TokenInputs, TokensPrompt, embeds_inputs, token_inputs) from .parse import is_explicit_encoder_decoder_prompt, parse_singleton_prompt logger = init_logger(__name__) class InputPreprocessor: def __init__( self, model_config: ModelConfig, tokenizer: Optional[TokenizerGroup], mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY, ) -> None: super().__init__() self.model_config = model_config self.tokenizer = tokenizer self.mm_registry = mm_registry def get_tokenizer_group(self) -> TokenizerGroup: if self.tokenizer is None: raise ValueError("You cannot pass text prompts when " "`skip_tokenizer_init` is True") return self.tokenizer def get_bos_token_id(self, lora_request: Optional[LoRARequest] = None ) -> Optional[int]: if self.tokenizer is None: logger.warning("Using None for BOS token id because tokenizer " "is not initialized") return None return self.tokenizer.get_lora_tokenizer(lora_request).bos_token_id def get_eos_token_id(self, lora_request: Optional[LoRARequest] = None ) -> Optional[int]: if self.tokenizer is None: logger.warning("Using None for EOS token id because tokenizer " "is not initialized") return None return self.tokenizer.get_lora_tokenizer(lora_request).eos_token_id def get_decoder_start_token_id(self) -> Optional[int]: """ Obtain the decoder start token id employed by an encoder/decoder model. Returns None for non-encoder/decoder models or if the model config is unavailable. """ if not self.model_config.is_encoder_decoder: logger.warning_once( "Using None for decoder start token id because " "this is not an encoder/decoder model.") return None if self.model_config is None or self.model_config.hf_config is None: logger.warning_once( "Using None for decoder start token id because " "model config is not available.") return None dec_start_token_id = getattr(self.model_config.hf_config, "decoder_start_token_id", None) if dec_start_token_id is None: logger.warning_once( "Falling back on for decoder start token " "id because decoder start token id is not " "available.") dec_start_token_id = self.get_bos_token_id() return dec_start_token_id def _get_default_enc_dec_decoder_prompt(self) -> list[int]: """ Specifically for encoder/decoder models: generate a default decoder prompt for when the user specifies only the encoder prompt. Encoder/decoder models utilize the decoder prompt in different ways; as new models are added, it is intended that this function will be extended to produce differing default decoder prompts, depending on the model variety. Absent a special case, the default behavior of this method is to mirror the behavior of the HuggingFace (HF) GenerationMixin for a None decoder prompt, which is to employ a logit processor setting to force the first decoded token to be . Here, this behavior is approximated by having the "default" decoder prompt be . However, it is possible that in the future other models may have different or more complex logic for the default decoder prompt. This motivates having a special helper method for default decoder prompts. Returns: * prompt_token_ids """ bos_token_id = self.get_bos_token_id() assert bos_token_id is not None return [bos_token_id] def _prepare_decoder_input_ids_for_generation( self, decoder_input_ids: Optional[list[int]], ) -> list[int]: """ Prepares `decoder_input_ids` for generation with encoder-decoder models. Based on: https://github.com/huggingface/transformers/blob/4037a2b5b1278736e566aec12e169100275545ea/src/transformers/generation/utils.py specifically, `GenerationMixin._prepare_decoder_input_ids_for_generation()`. Arguments: * decoder_input_ids: input token ids to preprocess Returns: * Processed token list """ decoder_start_token_id = self.get_decoder_start_token_id() assert decoder_start_token_id is not None if decoder_input_ids is None: # no decoder prompt input -> # use decoder_start_token_id as decoder_input_ids decoder_input_ids = self._get_default_enc_dec_decoder_prompt() if (len(decoder_input_ids) == 0 or decoder_input_ids[0] != decoder_start_token_id): decoder_input_ids = [decoder_start_token_id] + decoder_input_ids return decoder_input_ids def _apply_prompt_adapter( self, prompt_token_ids: list[int], prompt_adapter_request: Optional[PromptAdapterRequest], ) -> list[int]: if prompt_adapter_request: prompt_token_ids = ( [0] * prompt_adapter_request.prompt_adapter_num_virtual_tokens + prompt_token_ids) return prompt_token_ids def _get_tokenization_kw( self, overrides: Optional[dict[str, Any]] = None, ) -> dict[str, Any]: kwargs = dict[str, Any]() if self.model_config.hf_config.model_type == "whisper": # For Whisper, special tokens should be provided by the user based # on the task and language of their request. Also needed to avoid # appending an EOS token to the prompt which disrupts generation. kwargs["add_special_tokens"] = False if overrides: kwargs.update(overrides) return kwargs def _tokenize_prompt( self, prompt: str, lora_request: Optional[LoRARequest], tokenization_kwargs: Optional[dict[str, Any]] = None, ) -> list[int]: """ Apply the model's tokenizer to a text prompt, returning the corresponding token IDs. """ tokenizer = self.get_tokenizer_group() tokenization_kwargs = self._get_tokenization_kw(tokenization_kwargs) encoder_config = self.model_config.encoder_config if encoder_config and encoder_config.get("do_lower_case", False): prompt = prompt.lower() return tokenizer.encode(prompt=prompt, lora_request=lora_request, **tokenization_kwargs) async def _tokenize_prompt_async( self, prompt: str, lora_request: Optional[LoRARequest], tokenization_kwargs: Optional[dict[str, Any]] = None, ) -> list[int]: """ Async version of [`_tokenize_prompt`][vllm.inputs.preprocess.InputPreprocessor._tokenize_prompt]. """ tokenizer = self.get_tokenizer_group() tokenization_kwargs = self._get_tokenization_kw(tokenization_kwargs) return await tokenizer.encode_async(prompt=prompt, lora_request=lora_request, **tokenization_kwargs) def _get_mm_tokenizer( self, lora_request: Optional[LoRARequest], ) -> AnyTokenizer: # PrithviGeoSpatialMAE needs to be initialized without a tokenizer # while using also multi-modal input if not self.tokenizer: return cast(AnyTokenizer, object()) # Dummy tokenizer_group = self.get_tokenizer_group() return tokenizer_group.get_lora_tokenizer(lora_request) async def _get_mm_tokenizer_async( self, lora_request: Optional[LoRARequest], ) -> AnyTokenizer: # PrithviGeoSpatialMAE needs to be initialized without a tokenizer # while using also multi-modal input if not self.tokenizer: return cast(AnyTokenizer, object()) # Dummy tokenizer_group = self.get_tokenizer_group() return await tokenizer_group.get_lora_tokenizer_async(lora_request) def _process_multimodal( self, prompt: Union[str, list[int]], mm_data: MultiModalDataDict, mm_processor_kwargs: Optional[Mapping[str, object]], tokenization_kwargs: Optional[dict[str, Any]] = None, lora_request: Optional[LoRARequest] = None, return_mm_hashes: bool = False, ) -> MultiModalInputs: """ Apply the model's multi-modal processor to a multi-modal prompt, returning the corresponding token IDs and metadata. """ tokenizer = self._get_mm_tokenizer(lora_request) mm_processor = self.mm_registry.create_processor(self.model_config, tokenizer=tokenizer) if mm_processor_kwargs is None: mm_processor_kwargs = {} return mm_processor.apply(prompt, mm_data, hf_processor_mm_kwargs=mm_processor_kwargs, tokenization_kwargs=tokenization_kwargs, return_mm_hashes=return_mm_hashes) async def _process_multimodal_async( self, prompt: Union[str, list[int]], mm_data: MultiModalDataDict, mm_processor_kwargs: Optional[Mapping[str, object]], tokenization_kwargs: Optional[dict[str, Any]] = None, lora_request: Optional[LoRARequest] = None, return_mm_hashes: bool = False, ) -> MultiModalInputs: """ Async version of [`_process_multimodal`][vllm.inputs.preprocess.InputPreprocessor._process_multimodal]. """ tokenizer = await self._get_mm_tokenizer_async(lora_request) mm_processor = self.mm_registry.create_processor(self.model_config, tokenizer=tokenizer) if mm_processor_kwargs is None: mm_processor_kwargs = {} return mm_processor.apply(prompt, mm_data, hf_processor_mm_kwargs=mm_processor_kwargs, tokenization_kwargs=tokenization_kwargs, return_mm_hashes=return_mm_hashes) def _process_embeds( self, parsed_content: EmbedsPrompt, ) -> EmbedsInputs: if not self.model_config.enable_prompt_embeds: raise ValueError("You must set `--enable-prompt-embeds` to input " "`prompt_embeds`.") prompt_embeds = parsed_content["prompt_embeds"] # prompt_embeds must be (seq_len, hidden_size), but if the user # passes in a batch of size 1, i.e. (1, seq_len, hidden_size), # we can unambiguously process the intent by squeezing the batch # dimension. if prompt_embeds.ndim == 3: prompt_embeds = prompt_embeds.squeeze(dim=0) if prompt_embeds.ndim != 2: raise ValueError( "prompt_embeds must be of shape (seq_len, hidden_size).") return embeds_inputs(prompt_embeds=prompt_embeds, cache_salt=parsed_content.get("cache_salt")) async def _process_embeds_async( self, parsed_content: EmbedsPrompt, ) -> EmbedsInputs: return self._process_embeds(parsed_content) def _process_tokens( self, parsed_content: TokensPrompt, tokenization_kwargs: Optional[dict[str, Any]] = None, lora_request: Optional[LoRARequest] = None, return_mm_hashes: bool = False, ) -> Union[TokenInputs, MultiModalInputs]: prompt_token_ids = parsed_content["prompt_token_ids"] token_type_ids = parsed_content.get("token_type_ids") inputs: Union[TokenInputs, MultiModalInputs] if multi_modal_data := parsed_content.get("multi_modal_data"): inputs = self._process_multimodal( prompt_token_ids, multi_modal_data, parsed_content.get("mm_processor_kwargs"), tokenization_kwargs=tokenization_kwargs, lora_request=lora_request, return_mm_hashes=return_mm_hashes, ) else: inputs = token_inputs( prompt_token_ids=prompt_token_ids, token_type_ids=token_type_ids, ) if cache_salt := parsed_content.get("cache_salt"): inputs["cache_salt"] = cache_salt return inputs async def _process_tokens_async( self, parsed_content: TokensPrompt, tokenization_kwargs: Optional[dict[str, Any]] = None, lora_request: Optional[LoRARequest] = None, return_mm_hashes: bool = False, ) -> Union[TokenInputs, MultiModalInputs]: prompt_token_ids = parsed_content["prompt_token_ids"] token_type_ids = parsed_content.get("token_type_ids") inputs: Union[TokenInputs, MultiModalInputs] if multi_modal_data := parsed_content.get("multi_modal_data"): inputs = await self._process_multimodal_async( prompt_token_ids, multi_modal_data, parsed_content.get("mm_processor_kwargs"), tokenization_kwargs=tokenization_kwargs, lora_request=lora_request, return_mm_hashes=return_mm_hashes, ) else: inputs = token_inputs( prompt_token_ids=prompt_token_ids, token_type_ids=token_type_ids, ) if cache_salt := parsed_content.get("cache_salt"): inputs["cache_salt"] = cache_salt return inputs def _process_text( self, parsed_content: TextPrompt, tokenization_kwargs: Optional[dict[str, Any]] = None, lora_request: Optional[LoRARequest] = None, return_mm_hashes: bool = False, ) -> Union[TokenInputs, MultiModalInputs]: prompt_text = parsed_content["prompt"] inputs: Union[TokenInputs, MultiModalInputs] if multi_modal_data := parsed_content.get("multi_modal_data"): inputs = self._process_multimodal( prompt_text, multi_modal_data, parsed_content.get("mm_processor_kwargs"), tokenization_kwargs=tokenization_kwargs, lora_request=lora_request, return_mm_hashes=return_mm_hashes, ) else: prompt_token_ids = self._tokenize_prompt( prompt_text, lora_request=lora_request, tokenization_kwargs=tokenization_kwargs, ) inputs = token_inputs( prompt=prompt_text, prompt_token_ids=prompt_token_ids, ) if cache_salt := parsed_content.get("cache_salt"): inputs["cache_salt"] = cache_salt return inputs async def _process_text_async( self, parsed_content: TextPrompt, tokenization_kwargs: Optional[dict[str, Any]] = None, lora_request: Optional[LoRARequest] = None, return_mm_hashes: bool = False, ) -> Union[TokenInputs, MultiModalInputs]: prompt_text = parsed_content["prompt"] inputs: Union[TokenInputs, MultiModalInputs] if multi_modal_data := parsed_content.get("multi_modal_data"): inputs = await self._process_multimodal_async( prompt_text, multi_modal_data, parsed_content.get("mm_processor_kwargs"), tokenization_kwargs=tokenization_kwargs, lora_request=lora_request, return_mm_hashes=return_mm_hashes, ) else: prompt_token_ids = await self._tokenize_prompt_async( prompt_text, lora_request=lora_request, tokenization_kwargs=tokenization_kwargs, ) inputs = token_inputs( prompt=prompt_text, prompt_token_ids=prompt_token_ids, ) if cache_salt := parsed_content.get("cache_salt"): inputs["cache_salt"] = cache_salt return inputs def _prompt_to_llm_inputs( self, prompt: SingletonPrompt, tokenization_kwargs: Optional[dict[str, Any]] = None, lora_request: Optional[LoRARequest] = None, return_mm_hashes: bool = False, ) -> SingletonInputs: """ Extract the singleton inputs from a prompt. Arguments: * prompt: single encoder or decoder input prompt * lora_request: this is only valid for decoder prompts * return_mm_hashes: whether to return multimodal hashes Returns: * [`SingletonInputs`][vllm.inputs.data.SingletonInputs] instance """ parsed = parse_singleton_prompt(prompt) if parsed["type"] == "embeds": return self._process_embeds(parsed["content"]) if parsed["type"] == "tokens": return self._process_tokens( parsed["content"], lora_request=lora_request, return_mm_hashes=return_mm_hashes, ) if parsed["type"] == "text": return self._process_text( parsed["content"], tokenization_kwargs=tokenization_kwargs, lora_request=lora_request, return_mm_hashes=return_mm_hashes, ) if parsed["type"] == "str": return self._process_text( TextPrompt(prompt=parsed["content"]), tokenization_kwargs=tokenization_kwargs, lora_request=lora_request, return_mm_hashes=return_mm_hashes, ) assert_never(parsed) async def _prompt_to_llm_inputs_async( self, prompt: SingletonPrompt, tokenization_kwargs: Optional[dict[str, Any]] = None, lora_request: Optional[LoRARequest] = None, return_mm_hashes: bool = False, ) -> SingletonInputs: """ Async version of [`_prompt_to_llm_inputs`][vllm.inputs.preprocess.InputPreprocessor._prompt_to_llm_inputs]. """ parsed = parse_singleton_prompt(prompt) if parsed["type"] == "embeds": return await self._process_embeds_async(parsed["content"]) if parsed["type"] == "tokens": return await self._process_tokens_async( parsed["content"], lora_request=lora_request, return_mm_hashes=return_mm_hashes, ) if parsed["type"] == "text": return await self._process_text_async( parsed["content"], tokenization_kwargs=tokenization_kwargs, lora_request=lora_request, return_mm_hashes=return_mm_hashes, ) if parsed["type"] == "str": return await self._process_text_async( TextPrompt(prompt=parsed["content"]), tokenization_kwargs=tokenization_kwargs, lora_request=lora_request, return_mm_hashes=return_mm_hashes, ) assert_never(parsed) def _build_enc_dec_llm_inputs( self, encoder_inputs: SingletonInputs, decoder_inputs: Optional[SingletonInputs], ) -> EncoderDecoderInputs: if (encoder_inputs["type"] == "embeds" or decoder_inputs and decoder_inputs["type"] == "embeds"): raise ValueError("Embedding inputs are not supported for encoder-" "decoder models") # Needed for mypy encoder_inputs = cast(Union[TokenInputs, MultiModalInputs], encoder_inputs) decoder_inputs = cast(Optional[Union[TokenInputs, MultiModalInputs]], decoder_inputs) if decoder_inputs is None: if self.model_config.hf_config.model_type == "whisper": # For Whisper models, the text prompt should go to the decoder. # If no explicit encoder/decoder inputs, then copy the prompt # from the encoder to the decoder. The encoder tokens are later # overridden by the audio features. dec_token_ids = encoder_inputs["prompt_token_ids"].copy() else: dec_token_ids = self._prepare_decoder_input_ids_for_generation( None) decoder_inputs = token_inputs(dec_token_ids) else: if "multi_modal_data" in decoder_inputs: raise ValueError("Multi-modal decoder inputs of encoder-" "decoder models are not supported yet") dec_token_ids = self._prepare_decoder_input_ids_for_generation( decoder_inputs["prompt_token_ids"]) decoder_inputs["prompt_token_ids"] = dec_token_ids return EncoderDecoderInputs( encoder=encoder_inputs, decoder=decoder_inputs, ) def _split_enc_dec_mm_inputs( self, inputs: Union[SingletonInputs, MultiModalEncDecInputs], decoder_inputs_to_override: Optional[SingletonInputs] = None, ) -> tuple[SingletonInputs, SingletonInputs]: """ For encoder/decoder models only: Separate Encoder/Decoder inputs from a MultiModalEncDecInputs """ if (inputs["type"] == "embeds" or decoder_inputs_to_override and decoder_inputs_to_override["type"] == "embeds"): raise ValueError("Embedding inputs are not supported for encoder-" "decoder models") # Needed for mypy inputs = cast( Union[TokenInputs, MultiModalInputs, MultiModalEncDecInputs], inputs, ) decoder_inputs_to_override = cast( Optional[Union[TokenInputs, MultiModalInputs]], decoder_inputs_to_override, ) encoder_inputs: SingletonInputs decoder_inputs: SingletonInputs if inputs["type"] == "multimodal": # Multimodal data inputs if not ("encoder_prompt" in inputs and "encoder_prompt_token_ids" in inputs): raise RuntimeError("You should register an encoder-decoder " "multi-modal processor for encoder-decoder " "models.") inputs = cast(MultiModalEncDecInputs, inputs) encoder_inputs = token_inputs( prompt=inputs["encoder_prompt"], prompt_token_ids=inputs["encoder_prompt_token_ids"], ) decoder_prompt_inputs = decoder_inputs_to_override or inputs decoder_inputs = MultiModalInputs( type="multimodal", prompt=decoder_prompt_inputs.get("prompt", ""), prompt_token_ids=decoder_prompt_inputs["prompt_token_ids"], mm_kwargs=inputs["mm_kwargs"], mm_hashes=inputs["mm_hashes"], mm_placeholders=inputs["mm_placeholders"], ) if cache_salt := inputs.get("cache_salt"): decoder_inputs["cache_salt"] = cache_salt elif inputs["type"] == "token": # Text-only inputs encoder_inputs = token_inputs(prompt="", prompt_token_ids=[]) decoder_inputs = decoder_inputs_to_override or inputs else: assert_never(inputs) # type: ignore[arg-type] return encoder_inputs, decoder_inputs def _process_encoder_decoder_prompt( self, prompt: PromptType, tokenization_kwargs: Optional[dict[str, Any]] = None, ) -> EncoderDecoderInputs: """ For encoder/decoder models only: Process an input prompt into an [`EncoderDecoderInputs`][vllm.inputs.data.EncoderDecoderInputs] instance. There are two types of input prompts: singleton prompts which carry only the encoder prompt, and explicit encoder/decoder prompts which carry both the encoder and the decoder prompts as member variables. This function handles the following scenarios: * Singleton encoder prompt: extract encoder prompt token ids & infer default decoder prompt token ids * Explicit encoder/decoder prompt: extract encoder and decoder prompt token ids Note that for Explicit encoder/decoder prompts, each sub-prompt (encoder or decoder prompt) can have any possible singleton type; thus this method relies on helper functions to obtain token ids for the sub-prompts. Arguments: * prompt: an input prompt Returns: * [`EncoderDecoderInputs`][vllm.inputs.data.EncoderDecoderInputs] instance """ encoder_inputs: SingletonInputs decoder_inputs: Optional[SingletonInputs] if is_explicit_encoder_decoder_prompt(prompt): encoder_inputs = self._prompt_to_llm_inputs( prompt["encoder_prompt"], tokenization_kwargs=tokenization_kwargs, ) if (decoder_input := prompt["decoder_prompt"]) is None: decoder_inputs = None else: decoder_inputs = self._prompt_to_llm_inputs(decoder_input) # For multimodal model, override decoder prompt from processor # with explicit decoder prompt. if self.model_config.is_multimodal_model: encoder_inputs, decoder_inputs = ( self._split_enc_dec_mm_inputs(encoder_inputs, decoder_inputs)) else: inputs = self._prompt_to_llm_inputs( prompt, tokenization_kwargs=tokenization_kwargs, ) if self.model_config.is_multimodal_model: # Encoder-Decoder Multimodal model encoder_inputs, decoder_inputs = ( self._split_enc_dec_mm_inputs(inputs)) else: encoder_inputs = inputs decoder_inputs = None return self._build_enc_dec_llm_inputs(encoder_inputs, decoder_inputs) async def _process_encoder_decoder_prompt_async( self, prompt: PromptType, tokenization_kwargs: Optional[dict[str, Any]] = None, ) -> EncoderDecoderInputs: """ Async version of [`_process_encoder_decoder_prompt`][vllm.inputs.preprocess.InputPreprocessor._process_encoder_decoder_prompt]. """ encoder_inputs: SingletonInputs decoder_inputs: Optional[SingletonInputs] if is_explicit_encoder_decoder_prompt(prompt): encoder_task = self._prompt_to_llm_inputs_async( prompt["encoder_prompt"], tokenization_kwargs=tokenization_kwargs, ) if (decoder_input := prompt["decoder_prompt"]) is None: encoder_inputs = await encoder_task decoder_inputs = None else: decoder_task = self._prompt_to_llm_inputs_async( decoder_input, tokenization_kwargs=tokenization_kwargs, ) encoder_inputs, decoder_inputs = await asyncio.gather( encoder_task, decoder_task) # For multimodal model, override decoder prompt from processor # with explicit decoder prompt. if self.model_config.is_multimodal_model: encoder_inputs, decoder_inputs = ( self._split_enc_dec_mm_inputs(encoder_inputs, decoder_inputs)) else: inputs = await self._prompt_to_llm_inputs_async( prompt, tokenization_kwargs=tokenization_kwargs, ) if self.model_config.is_multimodal_model: # Encoder-Decoder Multimodal model encoder_inputs, decoder_inputs = ( self._split_enc_dec_mm_inputs(inputs)) else: encoder_inputs = inputs decoder_inputs = None return self._build_enc_dec_llm_inputs(encoder_inputs, decoder_inputs) def _build_decoder_only_llm_inputs( self, prompt_inputs: DecoderOnlyInputs, prompt_adapter_request: Optional[PromptAdapterRequest], ) -> DecoderOnlyInputs: if "prompt_token_ids" in prompt_inputs: prompt_inputs = cast(Union[TokenInputs, MultiModalInputs], prompt_inputs) # Needed for mypy prompt_inputs["prompt_token_ids"] = self._apply_prompt_adapter( prompt_inputs["prompt_token_ids"], prompt_adapter_request=prompt_adapter_request, ) return prompt_inputs def _process_decoder_only_prompt( self, prompt: SingletonPrompt, tokenization_kwargs: Optional[dict[str, Any]] = None, lora_request: Optional[LoRARequest] = None, prompt_adapter_request: Optional[PromptAdapterRequest] = None, return_mm_hashes: bool = False, ) -> DecoderOnlyInputs: """ For decoder-only models: Process an input prompt into a [`DecoderOnlyInputs`][vllm.inputs.data.DecoderOnlyInputs] instance. Arguments: * prompt: input prompt * lora_request * prompt_adapter_request * return_mm_hashes Returns: * [`DecoderOnlyInputs`][vllm.inputs.data.DecoderOnlyInputs] instance """ prompt_comps = self._prompt_to_llm_inputs( prompt, tokenization_kwargs=tokenization_kwargs, lora_request=lora_request, return_mm_hashes=return_mm_hashes, ) return self._build_decoder_only_llm_inputs( prompt_comps, prompt_adapter_request=prompt_adapter_request, ) async def _process_decoder_only_prompt_async( self, prompt: SingletonPrompt, tokenization_kwargs: Optional[dict[str, Any]] = None, lora_request: Optional[LoRARequest] = None, prompt_adapter_request: Optional[PromptAdapterRequest] = None, return_mm_hashes: bool = False, ) -> DecoderOnlyInputs: """ Async version of [`_process_decoder_only_prompt`][vllm.inputs.preprocess.InputPreprocessor._process_decoder_only_prompt]. """ prompt_comps = await self._prompt_to_llm_inputs_async( prompt, tokenization_kwargs=tokenization_kwargs, lora_request=lora_request, return_mm_hashes=return_mm_hashes, ) return self._build_decoder_only_llm_inputs( prompt_comps, prompt_adapter_request=prompt_adapter_request, ) def preprocess( self, prompt: PromptType, tokenization_kwargs: Optional[dict[str, Any]] = None, lora_request: Optional[LoRARequest] = None, prompt_adapter_request: Optional[PromptAdapterRequest] = None, return_mm_hashes: bool = False, ) -> ProcessorInputs: """Preprocess the input prompt.""" if self.model_config.is_encoder_decoder: assert not return_mm_hashes, ( "Multimodal hashes for encoder-decoder models should not be ", "returned until they are supported on vLLM V1.") # Encoder-decoder model requires special mapping of # input prompts to encoder & decoder return self._process_encoder_decoder_prompt( prompt, tokenization_kwargs) if is_explicit_encoder_decoder_prompt(prompt): raise ValueError("Cannot pass encoder-decoder prompt " "to decoder-only models") # Decoder-only operation return self._process_decoder_only_prompt( prompt, tokenization_kwargs=tokenization_kwargs, lora_request=lora_request, prompt_adapter_request=prompt_adapter_request, return_mm_hashes=return_mm_hashes, ) async def preprocess_async( self, prompt: PromptType, tokenization_kwargs: Optional[dict[str, Any]] = None, lora_request: Optional[LoRARequest] = None, prompt_adapter_request: Optional[PromptAdapterRequest] = None, return_mm_hashes: bool = False, ) -> ProcessorInputs: """ Async version of [`preprocess`][vllm.inputs.preprocess.InputPreprocessor.preprocess]. """ if self.model_config.is_encoder_decoder: assert not return_mm_hashes, ( "Multimodal hashes for encoder-decoder models should not be ", "returned until they are supported on vLLM V1.") # Encoder-decoder model requires special mapping of # input prompts to encoder & decoder return await self._process_encoder_decoder_prompt_async(prompt) if is_explicit_encoder_decoder_prompt(prompt): raise ValueError("Cannot pass encoder-decoder prompt " "to decoder-only models") # Decoder-only operation return await self._process_decoder_only_prompt_async( prompt, tokenization_kwargs=tokenization_kwargs, lora_request=lora_request, prompt_adapter_request=prompt_adapter_request, return_mm_hashes=return_mm_hashes, )