# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only MiniCPM model compatible with HuggingFace weights.""" import math from collections.abc import Iterable from itertools import islice from typing import Any import torch from torch import nn from transformers import PretrainedConfig from vllm.attention import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import ( get_pp_group, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, tensor_model_parallel_all_reduce, ) from vllm.model_executor.layers.activation import FatreluAndMul, SiluAndMul from vllm.model_executor.layers.fused_moe import fused_experts, fused_topk from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import ( MergedColumnParallelLinear, QKVParallelLinear, ReplicatedLinear, RowParallelLinear, ) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.utils import set_weight_attrs from vllm.platforms import current_platform from vllm.sequence import IntermediateTensors from .interfaces import SupportsEagle3, SupportsLoRA, SupportsPP from .utils import ( AutoWeightsLoader, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix, ) class MiniCPMMoE(nn.Module): """A tensor-parallel MoE implementation that shards each expert across all ranks. Each expert's weights are sharded across all ranks and a fused MoE kernel is used for the forward pass, and finally we reduce the outputs across ranks. """ def __init__( self, num_experts: int, top_k: int, hidden_size: int, intermediate_size: int, params_dtype: torch.dtype | None = None, tp_size: int | None = None, ): super().__init__() self.tp_size = tp_size or get_tensor_model_parallel_world_size() self.num_total_experts = num_experts self.top_k = top_k self.hidden_size = hidden_size self.intermediate_size = intermediate_size // self.tp_size if params_dtype is None: params_dtype = torch.get_default_dtype() self.params_dtype = params_dtype self.gate = ReplicatedLinear( self.hidden_size, self.num_total_experts, bias=False, params_dtype=self.params_dtype, quant_config=None, ) self.ws = nn.Parameter( torch.empty( self.num_total_experts, 2 * self.intermediate_size, self.hidden_size, device=current_platform.device_type, dtype=self.params_dtype, ) ) self.w2s = nn.Parameter( torch.empty( self.num_total_experts, self.hidden_size, self.intermediate_size, device=current_platform.device_type, dtype=self.params_dtype, ) ) set_weight_attrs( self.ws, { "weight_loader": self.weight_loader, }, ) set_weight_attrs( self.w2s, { "weight_loader": self.weight_loader, }, ) def weight_loader( self, param: nn.Parameter, loaded_weight: torch.Tensor, weight_name: str, expert_id: int, ): tp_rank = get_tensor_model_parallel_rank() param_data = param.data shard_size = self.intermediate_size shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size) if weight_name.endswith("w1.weight"): param_data[expert_id, 0:shard_size, :] = loaded_weight[shard, :] if weight_name.endswith("w3.weight"): param_data[expert_id, shard_size : 2 * shard_size, :] = loaded_weight[ shard, : ] if weight_name.endswith("w2.weight"): param_data[expert_id, :, :] = loaded_weight[:, shard] def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: num_tokens, hidden_size = hidden_states.shape hidden_states = hidden_states.view(-1, self.hidden_size) # router_logits: (num_tokens, n_experts) router_logits, _ = self.gate(hidden_states) topk_weights, topk_ids, _ = fused_topk( hidden_states, router_logits, self.top_k, renormalize=True ) final_hidden_states = fused_experts( hidden_states, self.ws, self.w2s, topk_weights, topk_ids, inplace=True ) if self.tp_size > 1: final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states) return final_hidden_states.view(num_tokens, hidden_size) class MiniCPMMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, hidden_act_param: float, quant_config: QuantizationConfig | None = None, ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config ) self.down_proj = RowParallelLinear( intermediate_size, hidden_size, bias=False, quant_config=quant_config ) if hidden_act == "silu": self.act_fn = SiluAndMul() elif hidden_act == "fatrelu": self.act_fn = FatreluAndMul(threshold=hidden_act_param) else: raise ValueError( f"Unsupported activation: {hidden_act}. " "Only silu and fatrelu are supported for now." ) def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class MiniCPMAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_kv_heads: int, rope_theta: float = 10000, rope_scaling: dict[str, Any] | None = None, max_position_embeddings: int = 8192, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=False, quant_config=quant_config, ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, ) self.attn = Attention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn", ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) orig_dtype = q.dtype q, k = q.float(), k.float() q, k = self.rotary_emb(positions, q, k) q, k = q.to(orig_dtype), k.to(orig_dtype) attn_output = self.attn(q, k, v) output, _ = self.o_proj(attn_output) return output class MiniCPMDecoderLayer(nn.Module): def __init__( self, config: PretrainedConfig, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.cache_config = cache_config self.quant_config = quant_config self.hidden_size = config.hidden_size self.rope_theta = getattr(config, "rope_theta", 10000) self.rope_scaling = getattr(config, "rope_scaling", None) self.max_position_embeddings = getattr(config, "max_position_embeddings", 8192) self.prefix = prefix self._init_attn_block() self._init_ffn_block() def _init_attn_block(self): self.input_layernorm = RMSNorm( self.config.hidden_size, eps=self.config.rms_norm_eps ) self.self_attn = MiniCPMAttention( hidden_size=self.hidden_size, num_heads=self.config.num_attention_heads, num_kv_heads=self.config.num_key_value_heads, rope_theta=self.rope_theta, rope_scaling=self.rope_scaling, max_position_embeddings=self.max_position_embeddings, cache_config=self.cache_config, quant_config=self.quant_config, prefix=f"{self.prefix}.self_attn", ) def _init_ffn_block(self): self.post_attention_layernorm = RMSNorm( self.config.hidden_size, eps=self.config.rms_norm_eps ) self.num_experts = getattr(self.config, "num_experts", 0) if self.num_experts == 0: self.mlp = MiniCPMMLP( hidden_size=self.hidden_size, intermediate_size=self.config.intermediate_size, hidden_act=self.config.hidden_act, hidden_act_param=getattr(self.config, "hidden_act_param", 0.0), quant_config=self.quant_config, ) else: self.mlp = MiniCPMMoE( num_experts=self.config.num_experts, top_k=self.config.num_experts_per_tok, hidden_size=self.config.hidden_size, intermediate_size=self.config.intermediate_size, ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, residual: torch.Tensor | None, ) -> tuple[torch.Tensor, torch.Tensor]: # Self Attention residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, ) hidden_states = residual + hidden_states * ( self.config.scale_depth / math.sqrt(self.config.num_hidden_layers) ) # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states * ( self.config.scale_depth / math.sqrt(self.config.num_hidden_layers) ) return hidden_states, None @support_torch_compile class MiniCPMModel(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config lora_config = vllm_config.lora_config self.config = config self.cache_config = cache_config self.quant_config = quant_config lora_vocab = ( (lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1)) if lora_config else 0 ) self.vocab_size = config.vocab_size + lora_vocab self.org_vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( self.vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size, ) self.num_experts = getattr(self.config, "num_experts", 0) self._init_layers(prefix, config, cache_config, quant_config) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.aux_hidden_state_layers = tuple[int, ...]() self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( ["hidden_states", "residual"], self.config.hidden_size ) def _init_layers( self, prefix: str, config: PretrainedConfig, cache_config: CacheConfig | None, quant_config: QuantizationConfig | None, ): self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: MiniCPMDecoderLayer( config, cache_config, quant_config, prefix=prefix ), prefix=f"{prefix}.layers", ) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: embedding = self.embed_tokens(input_ids) return embedding * self.config.scale_emb def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors | tuple[torch.Tensor, list[torch.Tensor]]: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.get_input_embeddings(input_ids) residual = None else: hidden_states = intermediate_tensors["hidden_states"] residual = intermediate_tensors["residual"] aux_hidden_states = [] for idx, layer in enumerate( islice(self.layers, self.start_layer, self.end_layer) ): if idx in self.aux_hidden_state_layers: aux_hidden_states.append( hidden_states + residual if residual is not None else hidden_states ) hidden_states, residual = layer( positions, hidden_states, residual, ) if not get_pp_group().is_last_rank: return IntermediateTensors( {"hidden_states": hidden_states, "residual": residual} ) hidden_states = self.norm(hidden_states) if len(aux_hidden_states) > 0: return hidden_states, aux_hidden_states return hidden_states def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] expert_params_mapping = [ # (param_name, weight_name, expert_id) ( "ws" if weight_name in ["w1", "w3"] else "w2s", f"experts.{expert_id}.{weight_name}.weight", expert_id, ) for expert_id in range(self.num_experts) for weight_name in ["w1", "w2", "w3"] ] params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name: # Models trained using ColossalAI may include these tensors in # the checkpoint. Skip them. continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: for param_name, weight_name, expert_id in expert_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader( param, loaded_weight, weight_name, expert_id=expert_id ) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = getattr( param, "weight_loader", default_weight_loader ) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class MiniCPMForCausalLM(nn.Module, SupportsLoRA, SupportsPP, SupportsEagle3): packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], "gate_up_proj": [ "gate_proj", "up_proj", ], } # LoRA specific attributes embedding_modules = { "embed_tokens": "input_embeddings", "lm_head": "output_embeddings", } embedding_padding_modules = ["lm_head"] def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config lora_config = vllm_config.lora_config self.prefix = prefix self.vllm_config = vllm_config self.config = config self.lora_config = lora_config self.cache_config = cache_config self.quant_config = quant_config self.model = self._init_model( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") ) unpadded_vocab_size = config.vocab_size if lora_config: unpadded_vocab_size += lora_config.lora_extra_vocab_size self.lm_head = ParallelLMHead( unpadded_vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size, padding_size=DEFAULT_VOCAB_PADDING_SIZE # We need bigger padding if using lora for kernel # compatibility if not lora_config else lora_config.lora_vocab_padding_size, quant_config=quant_config, prefix=maybe_prefix(prefix, "lm_head"), ) if config.tie_word_embeddings: self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens) self.scale_width = self.config.hidden_size / self.config.dim_model_base self.logits_processor = LogitsProcessor(unpadded_vocab_size, config.vocab_size) self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors ) def _init_model(self, *, vllm_config: VllmConfig, prefix: str = ""): return MiniCPMModel(vllm_config=vllm_config, prefix=prefix) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.get_input_embeddings(input_ids) def set_aux_hidden_state_layers(self, layers: tuple[int, ...]) -> None: self.model.aux_hidden_state_layers = layers def get_eagle3_aux_hidden_state_layers(self) -> tuple[int, ...]: num_layers = len(self.model.layers) return (2, num_layers // 2, num_layers - 3) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors | tuple[torch.Tensor, list[torch.Tensor]]: model_output = self.model( input_ids, positions, intermediate_tensors, inputs_embeds ) if isinstance(model_output, tuple) and len(model_output) == 2: # Aux hidden states are present. hidden_states, aux_hidden_states = model_output hidden_states = hidden_states / self.scale_width return hidden_states, aux_hidden_states else: # Only hidden states or IntermediateTensors if isinstance(model_output, IntermediateTensors): return model_output else: hidden_states = model_output / self.scale_width return hidden_states def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: logits = self.logits_processor(self.lm_head, hidden_states) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader( self, skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None), ) return loader.load_weights(weights)