# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import pytest import torch from tests.v1.attention.test_attention_backends import BATCH_SPECS from tests.v1.attention.utils import create_common_attn_metadata from vllm.v1.attention.backends.utils import (UbatchSlice, _make_metadata_with_slice, slice_query_start_locs, split_attn_metadata) @pytest.fixture def sample_query_start_loc(): """Sample query_start_loc tensor for testing""" return torch.tensor([0, 5, 12, 20, 35, 50]) def test_basic_slice_middle(sample_query_start_loc): """Test slicing from middle of tensor""" req_slice = slice(1, 3) # slice from index 1 to 3 result = slice_query_start_locs(sample_query_start_loc, req_slice) expected = torch.tensor([0, 7, 15]) assert torch.equal(result, expected) def test_slice_from_beginning(sample_query_start_loc): """Test slicing from the beginning of tensor""" req_slice = slice(0, 2) # slice from index 0 to 2 result = slice_query_start_locs(sample_query_start_loc, req_slice) expected = torch.tensor([0, 5, 12]) assert torch.equal(result, expected) def test_slice_to_end(sample_query_start_loc): """Test slicing to the end of tensor""" req_slice = slice(3, 5) # slice from index 3 to 5 (last index) result = slice_query_start_locs(sample_query_start_loc, req_slice) expected = torch.tensor([0, 15, 30]) assert torch.equal(result, expected) def test_single_element_slice(sample_query_start_loc): """Test slice that results in single element""" req_slice = slice(2, 3) # slice from index 2 to 3 result = slice_query_start_locs(sample_query_start_loc, req_slice) expected = torch.tensor([0, 8]) assert torch.equal(result, expected) def test_full_tensor_slice(sample_query_start_loc): """Test slicing the entire tensor""" req_slice = slice(0, 5) # slice entire tensor result = slice_query_start_locs(sample_query_start_loc, req_slice) expected = torch.tensor([0, 5, 12, 20, 35, 50]) assert torch.equal(result, expected) def test_slice_bounds_edge_cases(sample_query_start_loc): # Test slice that goes exactly to the last element req_slice = slice(4, 5) # Last index result = slice_query_start_locs(sample_query_start_loc, req_slice) expected = torch.tensor([0, 15]) assert torch.equal(result, expected) @pytest.fixture def small_decode_metadata(): """Create metadata for small decode batch""" batch_spec = BATCH_SPECS["small_decode"] device = torch.device("cpu") return create_common_attn_metadata(batch_spec, block_size=16, device=device) @pytest.fixture def large_decode_metadata(): """Create metadata for small decode batch""" batch_spec = BATCH_SPECS["large_decode"] device = torch.device("cpu") return create_common_attn_metadata(batch_spec, block_size=16, device=device) @pytest.fixture def mixed_small_metadata(): """Create metadata for mixed small batch""" batch_spec = BATCH_SPECS["mixed_small"] device = torch.device("cpu") return create_common_attn_metadata(batch_spec, block_size=16, device=device) # Tests for _make_metadata_with_slice def test_make_metadata_with_slice_decode_batch(small_decode_metadata): """Test slicing decode batch metadata""" # Split first request only ubatch_slice = UbatchSlice(slice(0, 1), slice(0, 1)) result = _make_metadata_with_slice(ubatch_slice, small_decode_metadata) # Check sliced results assert result.num_reqs == 1 # slice(0, 1) gives 1 requests assert result.num_actual_tokens == 1 # slice(0, 1) gives 1 token assert result.max_query_len == 1 assert torch.equal(result.query_start_loc, torch.tensor([0, 1])) assert torch.equal(result.seq_lens, torch.tensor([32])) def test_make_metadata_with_slice_mixed_batch(mixed_small_metadata): """Test slicing mixed batch metadata""" ubatch_slice = UbatchSlice(slice(1, 3), slice(1, 7)) # Requests 1-3, tokens 1-7 result = _make_metadata_with_slice(ubatch_slice, mixed_small_metadata) assert result.num_reqs == 2 # slice(1, 3) gives 2 requests assert result.num_actual_tokens == 6 # slice(1, 7) gives 6 tokens assert result.max_query_len == 5 assert torch.equal(result.query_start_loc, torch.tensor([0, 1, 6])) assert torch.equal(result.seq_lens, torch.tensor([40, 48])) def test_split_attn_metadata_decode_batch(large_decode_metadata): """Test splitting decode batch into two equal parts""" num_tokens = large_decode_metadata.num_reqs mid_point = num_tokens // 2 ubatch_slices = [ UbatchSlice(slice(0, mid_point), slice(0, mid_point)), UbatchSlice(slice(mid_point, num_tokens), slice(mid_point, num_tokens)), ] results = split_attn_metadata(ubatch_slices, large_decode_metadata) assert len(results) == 2 # Check first split assert results[0].num_reqs == mid_point assert results[0].num_actual_tokens == mid_point assert torch.equal(results[0].seq_lens, torch.tensor([2048] * mid_point)) # Check second split assert results[1].num_reqs == mid_point assert results[1].num_actual_tokens == mid_point assert torch.equal(results[1].seq_lens, torch.tensor([2048] * mid_point))