# --8<-- [start:installation] vLLM supports basic model inferencing and serving on x86 CPU platform, with data types FP32, FP16 and BF16. # --8<-- [end:installation] # --8<-- [start:requirements] - OS: Linux - CPU flags: `avx512f` (Recommended), `avx512_bf16` (Optional), `avx512_vnni` (Optional) !!! tip Use `lscpu` to check the CPU flags. # --8<-- [end:requirements] # --8<-- [start:set-up-using-python] # --8<-- [end:set-up-using-python] # --8<-- [start:pre-built-wheels] # --8<-- [end:pre-built-wheels] # --8<-- [start:build-wheel-from-source] Install recommended compiler. We recommend to use `gcc/g++ >= 12.3.0` as the default compiler to avoid potential problems. For example, on Ubuntu 22.4, you can run: ```bash sudo apt-get update -y sudo apt-get install -y gcc-12 g++-12 libnuma-dev python3-dev sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12 ``` Clone the vLLM project: ```bash git clone https://github.com/vllm-project/vllm.git vllm_source cd vllm_source ``` Install the required dependencies: ```bash uv pip install -r requirements/cpu-build.txt --torch-backend cpu uv pip install -r requirements/cpu.txt --torch-backend cpu ``` ??? console "pip" ```bash pip install --upgrade pip pip install -v -r requirements/cpu-build.txt --extra-index-url https://download.pytorch.org/whl/cpu pip install -v -r requirements/cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu ``` Build and install vLLM: ```bash VLLM_TARGET_DEVICE=cpu uv pip install . --no-build-isolation ``` If you want to develop vLLM, install it in editable mode instead. ```bash VLLM_TARGET_DEVICE=cpu uv pip install -e . --no-build-isolation ``` Optionally, build a portable wheel which you can then install elsewhere: ```bash VLLM_TARGET_DEVICE=cpu uv build --wheel ``` ```bash uv pip install dist/*.whl ``` ??? console "pip" ```bash VLLM_TARGET_DEVICE=cpu python -m build --wheel --no-isolation ``` ```bash pip install dist/*.whl ``` !!! example "Troubleshooting" - **NumPy ≥2.0 error**: Downgrade using `pip install "numpy<2.0"`. - **CMake picks up CUDA**: Add `CMAKE_DISABLE_FIND_PACKAGE_CUDA=ON` to prevent CUDA detection during CPU builds, even if CUDA is installed. - `AMD` requies at least 4th gen processors (Zen 4/Genoa) or higher to support [AVX512](https://www.phoronix.com/review/amd-zen4-avx512) to run vLLM on CPU. - If you receive an error such as: `Could not find a version that satisfies the requirement torch==X.Y.Z+cpu+cpu`, consider updating [pyproject.toml](https://github.com/vllm-project/vllm/blob/main/pyproject.toml) to help pip resolve the dependency. ```toml title="pyproject.toml" [build-system] requires = [ "cmake>=3.26.1", ... "torch==X.Y.Z+cpu" # <------- ] ``` - If you are building vLLM from source and not using the pre-built images, remember to set `LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:$LD_PRELOAD"` on x86 machines before running vLLM. # --8<-- [end:build-wheel-from-source] # --8<-- [start:pre-built-images] [https://gallery.ecr.aws/q9t5s3a7/vllm-cpu-release-repo](https://gallery.ecr.aws/q9t5s3a7/vllm-cpu-release-repo) !!! warning If deploying the pre-built images on machines without `avx512f`, `avx512_bf16`, or `avx512_vnni` support, an `Illegal instruction` error may be raised. It is recommended to build images for these machines with the appropriate build arguments (e.g., `--build-arg VLLM_CPU_DISABLE_AVX512=true`, `--build-arg VLLM_CPU_AVX512BF16=false`, or `--build-arg VLLM_CPU_AVX512VNNI=false`) to disable unsupported features. Please note that without `avx512f`, AVX2 will be used and this version is not recommended because it only has basic feature support. # --8<-- [end:pre-built-images] # --8<-- [start:build-image-from-source] ```bash docker build -f docker/Dockerfile.cpu \ --build-arg VLLM_CPU_AVX512BF16=false (default)|true \ --build-arg VLLM_CPU_AVX512VNNI=false (default)|true \ --build-arg VLLM_CPU_DISABLE_AVX512=false (default)|true \ --tag vllm-cpu-env \ --target vllm-openai . # Launching OpenAI server docker run --rm \ --security-opt seccomp=unconfined \ --cap-add SYS_NICE \ --shm-size=4g \ -p 8000:8000 \ -e VLLM_CPU_KVCACHE_SPACE= \ -e VLLM_CPU_OMP_THREADS_BIND= \ vllm-cpu-env \ --model=meta-llama/Llama-3.2-1B-Instruct \ --dtype=bfloat16 \ other vLLM OpenAI server arguments ``` # --8<-- [end:build-image-from-source] # --8<-- [start:extra-information] # --8<-- [end:extra-information]