"""Compare the outputs of HF and vLLM for Mistral models using greedy sampling. Run `pytest tests/models/embedding/language/test_embedding.py`. """ import pytest import torch import torch.nn.functional as F MODELS = [ "intfloat/e5-mistral-7b-instruct", "BAAI/bge-multilingual-gemma2", ] def compare_embeddings(embeddings1, embeddings2): similarities = [ F.cosine_similarity(torch.tensor(e1), torch.tensor(e2), dim=0) for e1, e2 in zip(embeddings1, embeddings2) ] return similarities @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["half"]) def test_models( hf_runner, vllm_runner, example_prompts, model: str, dtype: str, ) -> None: # The example_prompts has ending "\n", for example: # "Write a short story about a robot that dreams for the first time.\n" # sentence_transformers will strip the input texts, see: # https://github.com/UKPLab/sentence-transformers/blob/v3.1.1/sentence_transformers/models/Transformer.py#L159 # This makes the input_ids different between hf_model and vllm_model. # So we need to strip the input texts to avoid test failing. example_prompts = [str(s).strip() for s in example_prompts] with hf_runner(model, dtype=dtype, is_embedding_model=True) as hf_model: hf_outputs = hf_model.encode(example_prompts) with vllm_runner(model, dtype=dtype) as vllm_model: vllm_outputs = vllm_model.encode(example_prompts) similarities = compare_embeddings(hf_outputs, vllm_outputs) all_similarities = torch.stack(similarities) tolerance = 1e-2 assert torch.all((all_similarities <= 1.0 + tolerance) & (all_similarities >= 1.0 - tolerance) ), f"Not all values are within {tolerance} of 1.0"