# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Adapted from # https://huggingface.co/microsoft/phi-1_5/blob/main/modeling_phi.py # Copyright 2023 The vLLM team. # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # # BSD 3-Clause License # # Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Inference-only Phi-1.5 model compatible with HuggingFace weights.""" from collections.abc import Iterable from itertools import islice import torch from torch import nn from transformers import PhiConfig from vllm.attention.layer import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size from vllm.model_executor.layers.activation import get_act_fn from vllm.model_executor.layers.linear import ( ColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.sequence import IntermediateTensors from .interfaces import SupportsLoRA, SupportsPP from .utils import ( AutoWeightsLoader, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix, ) class PhiAttention(nn.Module): def __init__( self, config: PhiConfig, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.hidden_size = config.hidden_size self.head_size = self.hidden_size // config.num_attention_heads tensor_model_parallel_world_size = get_tensor_model_parallel_world_size() assert config.num_attention_heads % tensor_model_parallel_world_size == 0 self.num_heads = config.num_attention_heads // tensor_model_parallel_world_size # pylint: disable=C0103 self.qkv_proj = QKVParallelLinear( self.hidden_size, self.head_size, config.num_attention_heads, bias=True, quant_config=quant_config, prefix=f"{prefix}.qkv_proj", ) self.dense = RowParallelLinear( self.hidden_size, self.hidden_size, quant_config=quant_config, prefix=f"{prefix}.dense", ) scaling = self.head_size**-0.5 max_position_embeddings = getattr(config, "max_position_embeddings", 2048) self.rotary_emb = get_rope( self.head_size, max_position=max_position_embeddings, rope_parameters=config.rope_parameters, ) self.attn = Attention( self.num_heads, self.head_size, scaling, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn", ) def forward( self, position_ids: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) q, k = self.rotary_emb(position_ids, q, k) attn_output = self.attn(q, k, v) output, _ = self.dense(attn_output) return output class PhiMLP(nn.Module): def __init__( self, config: PhiConfig, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() n_inner = getattr(config, "n_inner", None) n_inner = n_inner if n_inner is not None else 4 * config.hidden_size self.fc1 = ColumnParallelLinear( config.hidden_size, n_inner, quant_config=quant_config, prefix=f"{prefix}.fc1", ) self.fc2 = RowParallelLinear( n_inner, config.hidden_size, quant_config=quant_config, prefix=f"{prefix}.fc2", ) self.act = get_act_fn(config.hidden_act) def forward(self, hidden_states): hidden_states, _ = self.fc1(hidden_states) hidden_states = self.act(hidden_states) hidden_states, _ = self.fc2(hidden_states) return hidden_states class PhiLayer(nn.Module): def __init__( self, config: PhiConfig, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.input_layernorm = nn.LayerNorm( config.hidden_size, eps=config.layer_norm_eps ) self.self_attn = PhiAttention( config, cache_config, quant_config, prefix=f"{prefix}.self_attn" ) self.mlp = PhiMLP(config, quant_config, prefix=f"{prefix}.mlp") def forward( self, position_ids: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) attn_outputs = self.self_attn( position_ids=position_ids, hidden_states=hidden_states, ) feed_forward_hidden_states = self.mlp(hidden_states) hidden_states = attn_outputs + feed_forward_hidden_states + residual return hidden_states @support_torch_compile class PhiModel(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.config = config self.quant_config = quant_config self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size ) self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: PhiLayer(config, cache_config, quant_config, prefix=prefix), prefix=f"{prefix}.layers", ) self.final_layernorm = nn.LayerNorm( config.hidden_size, eps=config.layer_norm_eps ) self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( ["hidden_states"], config.hidden_size ) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.embed_input_ids(input_ids) else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] for layer in islice(self.layers, self.start_layer, self.end_layer): hidden_states = layer(positions, hidden_states) if not get_pp_group().is_last_rank: return IntermediateTensors({"hidden_states": hidden_states}) hidden_states = self.final_layernorm(hidden_states) return hidden_states def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ] params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # pylint: disable=E1136 if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class PhiForCausalLM(nn.Module, SupportsLoRA, SupportsPP): packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ] } def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config self.config = config # lm_head use bias, cannot share word embeddings assert not config.tie_word_embeddings self.quant_config = quant_config self.model = PhiModel( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") ) self.lm_head = ParallelLMHead( config.vocab_size, config.hidden_size, bias=True, quant_config=quant_config, prefix=maybe_prefix(prefix, "lm_head"), ) self.logits_processor = LogitsProcessor(config.vocab_size) self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors ) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.embed_input_ids(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: hidden_states = self.model( input_ids, positions, intermediate_tensors, inputs_embeds ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: logits = self.logits_processor(self.lm_head, hidden_states, self.lm_head.bias) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader(self) return loader.load_weights(weights)