# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import weakref import pytest from vllm import LLM, SamplingParams from vllm.distributed import cleanup_dist_env_and_memory MODEL_NAME = "distilbert/distilgpt2" PROMPTS = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] TOKEN_IDS = [ [0], [0, 1], [0, 2, 1], [0, 3, 1, 2], ] @pytest.fixture(scope="module") def llm(): # pytest caches the fixture so we use weakref.proxy to # enable garbage collection llm = LLM( model=MODEL_NAME, max_num_batched_tokens=4096, tensor_parallel_size=1, gpu_memory_utilization=0.10, enforce_eager=True, ) yield weakref.proxy(llm) del llm cleanup_dist_env_and_memory() @pytest.mark.skip_global_cleanup def test_multiple_sampling_params(llm: LLM): sampling_params = [ SamplingParams(temperature=0.01, top_p=0.95), SamplingParams(temperature=0.3, top_p=0.95), SamplingParams(temperature=0.7, top_p=0.95), SamplingParams(temperature=0.99, top_p=0.95), ] # Multiple SamplingParams should be matched with each prompt outputs = llm.generate(PROMPTS, sampling_params=sampling_params) assert len(PROMPTS) == len(outputs) # Exception raised, if the size of params does not match the size of prompts with pytest.raises(ValueError): outputs = llm.generate(PROMPTS, sampling_params=sampling_params[:3]) # Single SamplingParams should be applied to every prompt single_sampling_params = SamplingParams(temperature=0.3, top_p=0.95) outputs = llm.generate(PROMPTS, sampling_params=single_sampling_params) assert len(PROMPTS) == len(outputs) # sampling_params is None, default params should be applied outputs = llm.generate(PROMPTS, sampling_params=None) assert len(PROMPTS) == len(outputs) def test_max_model_len(): max_model_len = 20 llm = LLM( model=MODEL_NAME, max_model_len=max_model_len, gpu_memory_utilization=0.10, enforce_eager=True, # reduce test time ) sampling_params = SamplingParams(max_tokens=max_model_len + 10) outputs = llm.generate(PROMPTS, sampling_params) for output in outputs: num_total_tokens = len(output.prompt_token_ids) + len( output.outputs[0].token_ids ) # Total tokens must not exceed max_model_len + 1 (the last token can be # generated with the context length equal to the max model length) # It can be less if generation finishes due to other reasons (e.g., EOS) # before reaching the absolute model length limit. assert num_total_tokens <= max_model_len + 1 def test_log_stats(): llm = LLM( model=MODEL_NAME, disable_log_stats=False, gpu_memory_utilization=0.10, enforce_eager=True, # reduce test time ) outputs = llm.generate(PROMPTS, sampling_params=None) # disable_log_stats is False, every output should have metrics assert all(output.metrics is not None for output in outputs)