# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # NOTE To avoid overloading the CI pipeline, this test script will # not be triggered on CI and is primarily intended for local testing # and verification. import vllm from vllm.lora.request import LoRARequest from ..utils import multi_gpu_test MODEL_PATH = "deepseek-ai/DeepSeek-V2-Lite-Chat" PROMPT_TEMPLATE = "<|begin▁of▁sentence|>You are a helpful assistant.\n\nUser: {context}\n\nAssistant:" # noqa: E501 def generate_and_test(llm: vllm.LLM, lora_path: str, lora_id: int): prompts = [ PROMPT_TEMPLATE.format(context="Who are you?"), ] sampling_params = vllm.SamplingParams(temperature=0, max_tokens=64) outputs = llm.generate( prompts, sampling_params, lora_request=LoRARequest(str(lora_id), lora_id, lora_path) if lora_id else None, ) # Print the outputs. generated_texts: list[str] = [] for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text.strip() generated_texts.append(generated_text) print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") # return generated_texts expected_lora_output = [ "I am \u5f20\u5b50\u8c6a, an AI assistant developed by \u9648\u58eb\u680b.", # noqa: E501 ] for i in range(len(expected_lora_output)): assert generated_texts[i].startswith(expected_lora_output[i]) def test_deepseekv2_lora(deepseekv2_lora_files): # We enable enforce_eager=True here to reduce VRAM usage for lora-test CI, # Otherwise, the lora-test will fail due to CUDA OOM. llm = vllm.LLM( MODEL_PATH, max_model_len=1024, enable_lora=True, max_loras=4, enforce_eager=True, trust_remote_code=True, enable_chunked_prefill=True, ) generate_and_test(llm, deepseekv2_lora_files, 1) def test_deepseekv2(deepseekv2_lora_files): # We enable enforce_eager=True here to reduce VRAM usage for lora-test CI, # Otherwise, the lora-test will fail due to CUDA OOM. llm = vllm.LLM( MODEL_PATH, max_model_len=1024, enable_lora=True, max_loras=4, enforce_eager=True, trust_remote_code=True, ) generate_and_test(llm, deepseekv2_lora_files, 1) @multi_gpu_test(num_gpus=2) def test_deepseekv2_tp2(deepseekv2_lora_files): # We enable enforce_eager=True here to reduce VRAM usage for lora-test CI, # Otherwise, the lora-test will fail due to CUDA OOM. llm = vllm.LLM( MODEL_PATH, max_model_len=1024, enable_lora=True, max_loras=4, enforce_eager=True, trust_remote_code=True, tensor_parallel_size=2, ) generate_and_test(llm, deepseekv2_lora_files, 2) @multi_gpu_test(num_gpus=4) def test_deepseekv2_tp4(deepseekv2_lora_files): # We enable enforce_eager=True here to reduce VRAM usage for lora-test CI, # Otherwise, the lora-test will fail due to CUDA OOM. llm = vllm.LLM( MODEL_PATH, max_model_len=1024, enable_lora=True, max_loras=4, enforce_eager=True, trust_remote_code=True, tensor_parallel_size=4, ) generate_and_test(llm, deepseekv2_lora_files, 2)