# Adapted from https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py import time from typing import Dict, List, Literal, Optional, Union from pydantic import BaseModel, Field from cacheflow.utils import random_uuid class ErrorResponse(BaseModel): object: str = "error" message: str type: str param: Optional[str] = None code: Optional[str] = None class ModelPermission(BaseModel): id: str = Field(default_factory=lambda: f"modelperm-{random_uuid()}") object: str = "model_permission" created: int = Field(default_factory=lambda: int(time.time())) allow_create_engine: bool = False allow_sampling: bool = True allow_logprobs: bool = True allow_search_indices: bool = False allow_view: bool = True allow_fine_tuning: bool = False organization: str = "*" group: Optional[str] = None is_blocking: str = False class ModelCard(BaseModel): id: str object: str = "model" created: int = Field(default_factory=lambda: int(time.time())) owned_by: str = "cacheflow" root: Optional[str] = None parent: Optional[str] = None permission: List[ModelPermission] = Field(default_factory=list) class ModelList(BaseModel): object: str = "list" data: List[ModelCard] = Field(default_factory=list) class UsageInfo(BaseModel): prompt_tokens: int = 0 total_tokens: int = 0 completion_tokens: Optional[int] = 0 class ChatCompletionRequest(BaseModel): model: str messages: List[Dict[str, str]] temperature: Optional[float] = 0.7 top_p: Optional[float] = 1.0 n: Optional[int] = 1 max_tokens: Optional[int] = None stop: Optional[Union[str, List[str]]] = None stream: Optional[bool] = False presence_penalty: Optional[float] = 0.0 frequency_penalty: Optional[float] = 0.0 user: Optional[str] = None class CompletionRequest(BaseModel): model: str prompt: str suffix: Optional[str] = None max_tokens: Optional[int] = 16 temperature: Optional[float] = 1.0 top_p: Optional[float] = 1.0 n: Optional[int] = 1 stream: Optional[bool] = False logprobs: Optional[int] = None echo: Optional[bool] = False stop: Optional[Union[str, List[str]]] = Field(default_factory=list) presence_penalty: Optional[float] = 0.0 frequency_penalty: Optional[float] = 0.0 best_of: Optional[int] = None logit_bias: Optional[Dict[str, float]] = None user: Optional[str] = None # Additional parameters supported by cacheflow top_k: Optional[int] = -1 ignore_eos: Optional[bool] = False use_beam_search: Optional[bool] = False class LogProbs(BaseModel): text_offset: List[int] = Field(default_factory=list) token_logprobs: List[Optional[float]] = Field(default_factory=list) tokens: List[str] = Field(default_factory=list) top_logprobs: List[Optional[Dict[str, float]]] = Field(default_factory=list) class CompletionResponseChoice(BaseModel): index: int text: str logprobs: Optional[LogProbs] = None finish_reason: Optional[Literal["stop", "length"]] = None class CompletionResponse(BaseModel): id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}") object: str = "text_completion" created: int = Field(default_factory=lambda: int(time.time())) model: str choices: List[CompletionResponseChoice] usage: UsageInfo class CompletionResponseStreamChoice(BaseModel): index: int text: str logprobs: Optional[LogProbs] = None finish_reason: Optional[Literal["stop", "length"]] = None class CompletionStreamResponse(BaseModel): id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}") object: str = "text_completion" created: int = Field(default_factory=lambda: int(time.time())) model: str choices: List[CompletionResponseStreamChoice]