# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import weakref import pytest from vllm import LLM, PoolingParams from vllm.distributed import cleanup_dist_env_and_memory MODEL_NAME = "intfloat/multilingual-e5-small" PROMPTS = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] TOKEN_IDS = [ # Using ID={0, 1, 2, 3} results in NaN values, # so we add this offset of 1000 [1000], [1000, 1001], [1000, 1002, 1001], [1000, 1003, 1001, 1002], ] @pytest.fixture(scope="module") def llm(): # pytest caches the fixture so we use weakref.proxy to # enable garbage collection llm = LLM(model=MODEL_NAME, max_num_batched_tokens=32768, tensor_parallel_size=1, gpu_memory_utilization=0.75, enforce_eager=True, seed=0) yield weakref.proxy(llm) del llm cleanup_dist_env_and_memory() @pytest.mark.skip_global_cleanup def test_multiple_pooling_params(llm: LLM): pooling_params = [ PoolingParams(), PoolingParams(), PoolingParams(), PoolingParams(), ] # Multiple PoolingParams should be matched with each prompt outputs = llm.encode(PROMPTS, pooling_params=pooling_params) assert len(PROMPTS) == len(outputs) # Exception raised, if the size of params does not match the size of prompts with pytest.raises(ValueError): outputs = llm.encode(PROMPTS, pooling_params=pooling_params[:3]) # Single PoolingParams should be applied to every prompt single_pooling_params = PoolingParams() outputs = llm.encode(PROMPTS, pooling_params=single_pooling_params) assert len(PROMPTS) == len(outputs) # pooling_params is None, default params should be applied outputs = llm.encode(PROMPTS, pooling_params=None) assert len(PROMPTS) == len(outputs) @pytest.mark.skip_global_cleanup def test_right_side_truncation(llm: LLM): # Embeddings models should truncate the end of the prompt tokenizer = llm.get_tokenizer() assert tokenizer.truncation_side == "right"