# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Adapted from # https://github.com/huggingface/transformers/blob/v4.40.1/src/transformers/models/olmo/modeling_olmo.py # Copyright 2024 The vLLM team. # Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only OLMo model compatible with HuggingFace weights.""" from collections.abc import Iterable from itertools import islice from typing import Optional, Union import torch from torch import nn from transformers import OlmoConfig from vllm.attention import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.linear import (MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.sequence import IntermediateTensors from .interfaces import SupportsLoRA, SupportsPP from .utils import (AutoWeightsLoader, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix) class OlmoAttention(nn.Module): """ This is the attention block where the output is computed as ``Attention(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))`` (plus another skip connection). """ def __init__( self, config: OlmoConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() self.config = config self.hidden_size = config.hidden_size tensor_model_parallel_world_size = ( get_tensor_model_parallel_world_size()) self.total_num_heads = config.num_attention_heads assert self.hidden_size % self.total_num_heads == 0 assert self.total_num_heads % tensor_model_parallel_world_size == 0 self.num_heads = (self.total_num_heads // tensor_model_parallel_world_size) self.head_dim = self.hidden_size // self.total_num_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.clip_qkv = config.clip_qkv # Attention input projection. Projects x -> (q, k, v) self.qkv_proj = QKVParallelLinear( self.hidden_size, self.head_dim, self.total_num_heads, bias=config.attention_bias, quant_config=quant_config, prefix=f"{prefix}.qkv_proj", ) # Rotary embeddings. self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=self.max_position_embeddings, base=self.rope_theta, ) self.scaling = self.head_dim**-0.5 self.attn = Attention(self.num_heads, self.head_dim, scale=self.scaling, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn") # Attention output projection. self.o_proj = RowParallelLinear( self.hidden_size, self.hidden_size, bias=config.attention_bias, quant_config=quant_config, prefix=f"{prefix}.o_proj", ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) if self.clip_qkv is not None: qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) q, k, v = qkv.chunk(chunks=3, dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v) output, _ = self.o_proj(attn_output) return output class OlmoMLP(nn.Module): """ This is the MLP block where the output is computed as ``MLP(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))`` (plus another skip connection). """ def __init__( self, config: OlmoConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size # Feed-forward input projection. self.gate_up_proj = MergedColumnParallelLinear( self.hidden_size, [self.intermediate_size] * 2, bias=False, quant_config=quant_config, prefix=f"{prefix}.gate_up_proj", ) # Activation function. self.act_fn = SiluAndMul() # Feed-forward output projection. self.down_proj = RowParallelLinear( self.intermediate_size, self.hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.down_proj", ) def forward( self, x: torch.Tensor, ) -> torch.Tensor: gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class OlmoDecoderLayer(nn.Module): """ This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))`` (plus another skip connection). """ def __init__(self, config: OlmoConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = ""): super().__init__() # Attention block. self.self_attn = OlmoAttention(config, cache_config, quant_config, prefix=f"{prefix}.self_attn") # MLP block. self.mlp = OlmoMLP(config, quant_config, prefix=f"{prefix}.mlp") # LayerNorm self.input_layernorm = nn.LayerNorm(config.hidden_size, elementwise_affine=False, bias=False) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, elementwise_affine=False, bias=False) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, ) -> tuple[torch.Tensor, Optional[tuple[torch.Tensor, torch.Tensor]]]: # Attention block. residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states = self.self_attn(positions, hidden_states) hidden_states = hidden_states + residual # MLP block. residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states @support_torch_compile class OlmoModel(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.config = config self.embed_tokens = VocabParallelEmbedding(config.vocab_size, config.hidden_size) self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: OlmoDecoderLayer( config, cache_config, quant_config, prefix=prefix), prefix=f"{prefix}.layers") self.norm = nn.LayerNorm(config.hidden_size, elementwise_affine=False, bias=False) self.make_empty_intermediate_tensors = ( make_empty_intermediate_tensors_factory(["hidden_states"], config.hidden_size)) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors], inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, IntermediateTensors]: """ :param input_ids: A tensor of shape `(batch_size, seq_len)`. """ if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.get_input_embeddings(input_ids) else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] # Apply blocks one-by-one. for layer in islice(self.layers, self.start_layer, self.end_layer): # shape: (batch_size, seq_len, d_model) hidden_states = layer(positions, hidden_states) if not get_pp_group().is_last_rank: return IntermediateTensors({"hidden_states": hidden_states}) # Apply final layer norm. # shape: (batch_size, seq_len or 1, d_model) hidden_states = self.norm(hidden_states) return hidden_states def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters(remove_duplicate=False)) loaded_params: set[str] = set() for name, loaded_weight in weights: for (param_name, weight_name, shard_id) in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class OlmoForCausalLM(nn.Module, SupportsPP, SupportsLoRA): """ Extremely barebones HF model wrapper. """ packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], "gate_up_proj": [ "gate_proj", "up_proj", ], } def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config self.config = config self.model = OlmoModel(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")) if config.tie_word_embeddings: self.lm_head = self.model.embed_tokens else: self.unpadded_vocab_size = config.vocab_size self.lm_head = ParallelLMHead( self.unpadded_vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size, quant_config=quant_config, prefix=maybe_prefix(prefix, "lm_head"), ) self.logits_processor = LogitsProcessor(config.vocab_size) self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.get_input_embeddings(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, IntermediateTensors]: hidden_states = self.model( input_ids=input_ids, positions=positions, intermediate_tensors=intermediate_tensors, inputs_embeds=inputs_embeds, ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader( self, skip_prefixes=(["lm_head.weight"] if self.config.tie_word_embeddings else None), ) return loader.load_weights(weights)