# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from typing import cast import pytest import torch import vllm.envs as envs from tests.kernels.quantization.nvfp4_utils import quant_nvfp4_tensor from vllm._custom_ops import cutlass_scaled_fp4_mm, scaled_fp4_quant # yapf conflicts with isort for this block # yapf: disable from vllm.compilation.activation_quant_fusion import ( FUSED_OPS, SILU_MUL_OP, ActivationQuantFusionPass) # yapf: enable from vllm.compilation.fusion import QUANT_OPS from vllm.compilation.noop_elimination import NoOpEliminationPass from vllm.compilation.post_cleanup import PostCleanupPass from vllm.config import CompilationConfig, PassConfig, VllmConfig from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.quantization.utils.quant_utils import ( GroupShape, kFp8StaticTensorSym, kNvfp4Quant) from vllm.model_executor.layers.quantization.utils.w8a8_utils import ( Fp8LinearOp, cutlass_fp8_supported) from vllm.platforms import current_platform from ..utils import override_cutlass_fp8_supported from .backend import TestBackend FP8_DTYPE = current_platform.fp8_dtype() FP4_DTYPE = torch.uint8 def is_nvfp4_supported(): return current_platform.has_device_capability(100) class TestSiluMulFp8QuantModel(torch.nn.Module): def __init__(self, hidden_size: int, cuda_force_torch: bool, **kwargs): super().__init__() self.silu_and_mul = SiluAndMul() self.wscale = torch.rand(1, dtype=torch.float32) self.scale = torch.rand(1, dtype=torch.float32) self.w = torch.rand(hidden_size, hidden_size).to(dtype=FP8_DTYPE).t() with override_cutlass_fp8_supported(not cuda_force_torch): self.fp8_linear = Fp8LinearOp( act_quant_static=True, act_quant_group_shape=GroupShape.PER_TENSOR, ) def forward(self, x): y = self.silu_and_mul(x) x2 = self.fp8_linear.apply(y, self.w, self.wscale, input_scale=self.wscale) return x2 def ops_in_model_before(self): return [SILU_MUL_OP, QUANT_OPS[kFp8StaticTensorSym]] def ops_in_model_after(self): return [FUSED_OPS[kFp8StaticTensorSym]] class TestSiluMulNvfp4QuantModel(torch.nn.Module): def __init__(self, hidden_size: int, x: torch.Tensor, **kwargs): super().__init__() from vllm.compilation.activation_quant_fusion import ( silu_and_mul_nvfp4_quant_supported) assert silu_and_mul_nvfp4_quant_supported self.silu_and_mul = SiluAndMul() # create nvfp4 weight w = torch.rand((hidden_size, hidden_size)) self.w, self.w_block_scale, self.w_global_scale = quant_nvfp4_tensor(w) # get global scale offline _, _, self.y_global_scale = quant_nvfp4_tensor(self.silu_and_mul(x)) self.alpha = 1.0 / (self.w_global_scale * self.y_global_scale) def forward(self, x): y = self.silu_and_mul(x) y_quant, y_block_scale = scaled_fp4_quant(y, self.y_global_scale) out = cutlass_scaled_fp4_mm(a=y_quant, b=self.w, block_scale_a=y_block_scale, block_scale_b=self.w_block_scale, alpha=self.alpha, out_dtype=y.dtype) return out def ops_in_model_before(self): return [SILU_MUL_OP, QUANT_OPS[kNvfp4Quant]] def ops_in_model_after(self): return [FUSED_OPS[kNvfp4Quant]] @pytest.mark.parametrize("num_tokens", [32, 64]) @pytest.mark.parametrize("hidden_size", [128, 256]) @pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float16]) @pytest.mark.parametrize( "model_class", cast(list[type], [TestSiluMulFp8QuantModel, TestSiluMulNvfp4QuantModel] if is_nvfp4_supported() else [TestSiluMulFp8QuantModel])) # cuda_force_torch used to test torch code path on platforms that # cutlass_fp8_supported() == True. @pytest.mark.parametrize("cuda_force_torch", [True, False] if cutlass_fp8_supported() else [True]) @pytest.mark.skipif(envs.VLLM_TARGET_DEVICE not in ["cuda", "rocm"], reason="Only test on CUDA and ROCm") def test_fusion_silu_and_mul_quant(num_tokens, hidden_size, dtype, model_class, cuda_force_torch): if model_class == TestSiluMulNvfp4QuantModel and cuda_force_torch: pytest.skip("Duplicate tests for NVFP4") torch.set_default_device("cuda") torch.set_default_dtype(dtype) x = torch.rand(num_tokens, hidden_size * 2) # Reshape pass is needed for the fusion pass to work config = VllmConfig() config.compilation_config = CompilationConfig( pass_config=PassConfig(enable_fusion=True, enable_noop=True)) fusion_pass = ActivationQuantFusionPass(config) passes = [ NoOpEliminationPass(config), fusion_pass, PostCleanupPass(config) ] backend = TestBackend(*passes) model = model_class(hidden_size=hidden_size, cuda_force_torch=cuda_force_torch, x=x) # First dimension dynamic torch._dynamo.mark_dynamic(x, 0) result = model(x) model2 = torch.compile(model, backend=backend) result2 = model2(x) # Check that it gives the same answer if model_class == TestSiluMulFp8QuantModel: atol, rtol = 1e-3, 1e-3 elif model_class == TestSiluMulNvfp4QuantModel: atol, rtol = 1e-1, 1e-1 torch.testing.assert_close(result[0].to(dtype=dtype), result2[0].to(dtype=dtype), atol=atol, rtol=rtol) assert fusion_pass.matched_count == 1 # In pre-nodes, quant op should be present and fused kernels should not backend.check_before_ops(model.ops_in_model_before()) # In post-nodes, fused kernels should be present and quant op should not backend.check_after_ops(model.ops_in_model_after())