# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # coding=utf-8 # Copyright 2024 The HunYuan team. # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only HunYuan model compatible with HuggingFace weights.""" import typing from collections.abc import Callable, Iterable from itertools import islice import regex as re import torch from torch import nn from transformers import PretrainedConfig from vllm.attention import Attention, AttentionType from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig, get_current_vllm_config from vllm.distributed import ( get_ep_group, get_pp_group, get_tensor_model_parallel_world_size, tensor_model_parallel_all_reduce, ) from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.fused_moe import SharedFusedMoE from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import ( ColumnParallelLinear, MergedColumnParallelLinear, QKVParallelLinear, ReplicatedLinear, RowParallelLinear, ) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import ( default_weight_loader, maybe_remap_kv_scale_name, ) from vllm.sequence import IntermediateTensors from .interfaces import MixtureOfExperts, SupportsLoRA, SupportsPP from .utils import ( AutoWeightsLoader, PPMissingLayer, is_pp_missing_parameter, make_layers, maybe_prefix, ) def _is_moe(config: PretrainedConfig) -> bool: num_experts = getattr(config, "num_experts", None) if isinstance(num_experts, int): return num_experts > 1 if isinstance(num_experts, list) and num_experts: # Ensure all elements are integers before calling max. if all(isinstance(e, int) for e in num_experts): return max(num_experts) > 1 else: return False return False def _get_cla_factor(config: PretrainedConfig) -> int: if not getattr(config, "use_cla", False): return 1 return getattr(config, "cla_share_factor", 1) class HunYuanMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, quant_config: QuantizationConfig | None = None, bias: bool = False, prefix: str = "", reduce_results: bool = True, ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( input_size=hidden_size, output_sizes=[intermediate_size] * 2, bias=bias, quant_config=quant_config, prefix=f"{prefix}.gate_up_proj", ) self.down_proj = RowParallelLinear( input_size=intermediate_size, output_size=hidden_size, bias=bias, quant_config=quant_config, prefix=f"{prefix}.down_proj", reduce_results=reduce_results, ) if hidden_act != "silu": raise ValueError( f"Unsupported activation: {hidden_act}. Only silu is supported for now." ) self.act_fn = SiluAndMul() def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class HunYuanAttention(nn.Module): def __init__( self, config: PretrainedConfig, hidden_size: int, num_heads: int, num_kv_heads: int, max_position_embeddings: int = 8192, quant_config: QuantizationConfig | None = None, bias: bool = False, cache_config: CacheConfig | None = None, prefix: str = "", layer_id: int = -1, ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) if hasattr(config, "head_dim") and config.head_dim: self.head_dim = config.head_dim elif hasattr(config, "attention_head_dim"): self.head_dim = config.attention_head_dim else: self.head_dim = self.hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.max_position_embeddings = max_position_embeddings self.use_qk_norm = getattr(config, "use_qk_norm", False) self.layer_id = layer_id self.qkv_proj = QKVParallelLinear( hidden_size=hidden_size, head_size=self.head_dim, total_num_heads=self.total_num_heads, total_num_kv_heads=self.total_num_kv_heads, bias=bias, quant_config=quant_config, prefix=f"{prefix}.qkv_proj", ) self.o_proj = RowParallelLinear( input_size=self.total_num_heads * self.head_dim, output_size=hidden_size, bias=bias, quant_config=quant_config, prefix=f"{prefix}.o_proj", ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, rope_parameters=config.rope_parameters, is_neox_style=True, ) self.attn = Attention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn", ) if self.use_qk_norm: self.query_layernorm = RMSNorm(self.head_dim, eps=config.rms_norm_eps) self.key_layernorm = RMSNorm(self.head_dim, eps=config.rms_norm_eps) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_states: tuple[torch.Tensor] | None = None, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) ori_k = k if self.use_qk_norm: q = self.query_layernorm( q.view(-1, self.num_heads, self.head_dim).contiguous() ) k = self.key_layernorm( k.view(-1, self.num_kv_heads, self.head_dim).contiguous() ) attn_output = self.attn(q, k, v) # For o_proj attn_output = attn_output.view(q.shape[0], -1) output, _ = self.o_proj(attn_output) return output, (ori_k, v) class HunYuanCrossAttention(nn.Module): def __init__( self, config: PretrainedConfig, hidden_size: int, num_heads: int, num_kv_heads: int, max_position_embeddings: int = 8192, quant_config: QuantizationConfig | None = None, bias: bool = False, cache_config: CacheConfig | None = None, prefix: str = "", layer_id: int = -1, ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) # MistralConfig has an optional head_dim introduced by Mistral-Nemo if hasattr(config, "head_dim"): self.head_dim = config.head_dim elif hasattr(config, "attention_head_dim"): self.head_dim = config.attention_head_dim else: self.head_dim = self.hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.max_position_embeddings = max_position_embeddings self.use_qk_norm = getattr(config, "use_qk_norm", False) self.layer_id = layer_id self.q_proj = ColumnParallelLinear( hidden_size, hidden_size, bias=bias, quant_config=quant_config, prefix=f"{prefix}.q_proj", ) self.o_proj = RowParallelLinear( input_size=self.total_num_heads * self.head_dim, output_size=hidden_size, bias=bias, quant_config=quant_config, prefix=f"{prefix}.o_proj", ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, rope_parameters=config.rope_parameters, is_neox_style=True, ) self.attn = Attention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn", attn_type=AttentionType.ENCODER_DECODER, ) if self.use_qk_norm: self.query_layernorm = RMSNorm(self.head_dim, eps=config.rms_norm_eps) self.key_layernorm = RMSNorm(self.head_dim, eps=config.rms_norm_eps) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_states: tuple[torch.Tensor] | None = None, ) -> torch.Tensor: assert kv_states is not None ori_k, v = kv_states # use last layer kv, k = ori_k q, _ = self.q_proj(hidden_states) k_tmp = torch.empty_like(k) # Todo: reduant rotary embedding q, _ = self.rotary_emb(positions, q, k_tmp) if self.use_qk_norm: q = self.query_layernorm( q.view(-1, self.num_heads, self.head_dim).contiguous() ) k = self.key_layernorm( k.view(-1, self.num_kv_heads, self.head_dim).contiguous() ) attn_output = self.attn(q, k, v) # For o_proj attn_output = attn_output.view(q.shape[0], -1) output, _ = self.o_proj(attn_output) return output, (ori_k, v) class HunYuanSparseMoeBlock(nn.Module): def __init__( self, config: PretrainedConfig, quant_config: QuantizationConfig | None = None, layer_id: int = -1, prefix: str = "", enable_eplb: bool = False, ): super().__init__() self.tp_size = get_tensor_model_parallel_world_size() self.ep_group = get_ep_group().device_group self.ep_rank = get_ep_group().rank_in_group self.ep_size = self.ep_group.size() self.n_routed_experts = config.num_experts if self.tp_size > config.num_experts: raise ValueError( f"Tensor parallel size {self.tp_size} is greater than " f"the number of experts {config.num_experts}." ) # Get layer_id topk if config.moe_topk is a list if isinstance(config.moe_topk, list): assert layer_id >= 0 assert len(config.moe_topk) > layer_id top_k = config.moe_topk[layer_id] else: top_k = config.moe_topk # If it is moe, moe_intermediate_size is preferred intermediate_size = config.intermediate_size if config.moe_intermediate_size is not None: intermediate_size = ( config.moe_intermediate_size if isinstance(config.moe_intermediate_size, int) else config.moe_intermediate_size[layer_id] ) # Load balancing settings. vllm_config = get_current_vllm_config() eplb_config = vllm_config.parallel_config.eplb_config self.enable_eplb = enable_eplb self.n_logical_experts = self.n_routed_experts self.n_redundant_experts = eplb_config.num_redundant_experts self.n_physical_experts = self.n_logical_experts + self.n_redundant_experts self.n_local_physical_experts = self.n_physical_experts // self.ep_size self.physical_expert_start = self.ep_rank * self.n_local_physical_experts self.physical_expert_end = ( self.physical_expert_start + self.n_local_physical_experts ) self.gate = ReplicatedLinear( config.hidden_size, config.num_experts, bias=False, quant_config=None, prefix=f"{prefix}.gate", ) if config.use_mixed_mlp_moe > 0: # Get layer_id num_shared_expert if config.num_shared_expert is # a list. if isinstance(config.num_shared_expert, list): assert layer_id >= 0 assert len(config.num_shared_expert) > layer_id num_shared_expert = config.num_shared_expert[layer_id] else: num_shared_expert = config.num_shared_expert self.shared_mlp = HunYuanMLP( hidden_size=config.hidden_size, intermediate_size=config.intermediate_size * num_shared_expert, hidden_act=config.hidden_act, quant_config=quant_config, reduce_results=False, ) else: self.shared_mlp = None self.experts = SharedFusedMoE( shared_experts=self.shared_mlp, num_experts=self.n_routed_experts, top_k=top_k, hidden_size=config.hidden_size, intermediate_size=intermediate_size, reduce_results=False, renormalize=top_k > 1, quant_config=quant_config, prefix=f"{prefix}.experts", enable_eplb=self.enable_eplb, num_redundant_experts=self.n_redundant_experts, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # NOTE: hidden_states can have either 1D or 2D shape. orig_shape = hidden_states.shape hidden_dim = hidden_states.shape[-1] hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (num_tokens, n_experts) router_logits, _ = self.gate(hidden_states) final_hidden_states = self.experts( hidden_states=hidden_states, router_logits=router_logits ) if self.shared_mlp is not None: final_hidden_states = final_hidden_states[0] + final_hidden_states[1] if self.tp_size > 1: final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states) return final_hidden_states.view(orig_shape) class HunYuanDecoderLayer(nn.Module): def __init__( self, config: PretrainedConfig, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", layer_id: int = -1, enable_eplb: bool = False, ) -> None: super().__init__() assert layer_id >= 0 self.layer_id = layer_id self.hidden_size = config.hidden_size self.intermediate_size = ( config.intermediate_size if isinstance(config.intermediate_size, int) else config.intermediate_size[layer_id] ) max_position_embeddings = getattr(config, "max_position_embeddings", 8192) attention_bias = getattr(config, "attention_bias", False) or getattr( config, "bias", False ) cla_factor = _get_cla_factor(config) attention_type = ( AttentionType.ENCODER_DECODER if layer_id >= 0 and layer_id % cla_factor != 0 else AttentionType.DECODER ) if attention_type == AttentionType.DECODER: self.self_attn = HunYuanAttention( config=config, hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=getattr( config, "num_key_value_heads", config.num_attention_heads ), max_position_embeddings=max_position_embeddings, quant_config=quant_config, bias=attention_bias, cache_config=cache_config, prefix=f"{prefix}.self_attn", layer_id=layer_id, ) elif attention_type == AttentionType.ENCODER_DECODER: self.self_attn = HunYuanCrossAttention( config=config, hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=getattr( config, "num_key_value_heads", config.num_attention_heads ), max_position_embeddings=max_position_embeddings, quant_config=quant_config, bias=attention_bias, cache_config=cache_config, prefix=f"{prefix}.self_attn", layer_id=layer_id, ) else: raise RuntimeError(f"Unsupported attention type: {attention_type}") if _is_moe(config): self.mlp = HunYuanSparseMoeBlock( config=config, quant_config=quant_config, layer_id=layer_id, prefix=f"{prefix}.mlp", enable_eplb=enable_eplb, ) else: self.mlp = HunYuanMLP( hidden_size=self.hidden_size, intermediate_size=self.intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, bias=getattr(config, "mlp_bias", False), prefix=f"{prefix}.mlp", ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, residual: torch.Tensor | None, kv_states: tuple[torch.Tensor] | None = None, ) -> tuple[torch.Tensor, torch.Tensor]: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states, ori_kv_states = self.self_attn( positions=positions, hidden_states=hidden_states, kv_states=kv_states, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual, ori_kv_states @support_torch_compile class HunYuanModel(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config eplb_config = vllm_config.parallel_config.eplb_config enable_eplb = vllm_config.parallel_config.enable_eplb self.num_redundant_experts = eplb_config.num_redundant_experts self.config = config self.quant_config = quant_config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size if get_pp_group().is_first_rank or ( config.tie_word_embeddings and get_pp_group().is_last_rank ): self.embed_tokens = VocabParallelEmbedding( self.vocab_size, config.hidden_size, quant_config=quant_config, ) else: self.embed_tokens = PPMissingLayer() self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: HunYuanDecoderLayer( config=config, layer_id=int(prefix.split(".")[-1]), cache_config=cache_config, quant_config=quant_config, prefix=prefix, enable_eplb=enable_eplb, ), prefix=f"{prefix}.layers", ) if get_pp_group().is_last_rank: self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) else: self.norm = PPMissingLayer() def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor | None, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.embed_input_ids(input_ids) residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] residual = intermediate_tensors["residual"] cla_factor = _get_cla_factor(self.config) prev_kv_states = None for i, layer in enumerate( islice(self.layers, self.start_layer, self.end_layer) ): hidden_states, residual, kv_states = layer( positions, hidden_states, residual, prev_kv_states, ) if getattr(self.config, "use_cla", False) and i % cla_factor == 0: prev_kv_states = kv_states else: prev_kv_states = None if not get_pp_group().is_last_rank: return IntermediateTensors( {"hidden_states": hidden_states, "residual": residual} ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states def _split_qkv_weight(self, qkv: torch.Tensor): num_attention_heads = self.config.num_attention_heads num_kv_heads = getattr( self.config, "num_key_value_heads", self.config.num_attention_heads ) num_key_value_groups = num_attention_heads // num_kv_heads hidden_size = self.config.hidden_size if hasattr(self.config, "head_dim"): attention_head_dim = self.config.head_dim elif hasattr(self.config, "attention_head_dim"): attention_head_dim = self.config.attention_head_dim else: attention_head_dim = self.config.hidden_size // num_attention_heads qkv = qkv.reshape( num_kv_heads, num_key_value_groups + 2, attention_head_dim, hidden_size ) q, k, v = torch.split(qkv, (num_key_value_groups, 1, 1), dim=1) q = q.reshape(-1, hidden_size) k = k.reshape(-1, hidden_size) v = v.reshape(-1, hidden_size) return torch.concat((q, k, v)) def get_expert_mapping(self) -> list[tuple[str, str, int, str]]: if _is_moe(self.config): # Params for weights, fp8 weight scales, fp8 activation scales # (param_name, weight_name, expert_id, shard_id) return SharedFusedMoE.make_expert_params_mapping( ckpt_gate_proj_name="gate_proj", ckpt_down_proj_name="down_proj", ckpt_up_proj_name="up_proj", num_experts=self.config.num_experts, num_redundant_experts=self.num_redundant_experts, ) else: return [] def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]): cla_factor = _get_cla_factor(self.config) stacked_params_mapping = [ # (param_name, shard_name, shard_id) (".qkv_proj", ".q_proj", "q"), (".qkv_proj", ".k_proj", "k"), (".qkv_proj", ".v_proj", "v"), (".gate_up_proj", ".gate_proj", 0), (".gate_up_proj", ".up_proj", 1), ] num_attention_heads = self.config.num_attention_heads num_kv_heads = getattr( self.config, "num_key_value_heads", self.config.num_attention_heads ) split_params_mapping = [ (".gate_up_proj", ".gate_and_up_proj", 2, [(1, 1), (0, 1)], None), ( ".qkv_proj", ".qkv_proj", num_attention_heads + num_kv_heads * 2, [("q", num_attention_heads), ("k", num_kv_heads), ("v", num_kv_heads)], self._split_qkv_weight, ), ] params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() expert_params_mapping = self.get_expert_mapping() for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue if "gate_proj_bias" in name: name = name.replace("gate_proj_bias", "gate_proj.bias") if "up_proj_bias" in name: name = name.replace("up_proj_bias", "up_proj.bias") if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name: # Models trained using ColossalAI may include these tensors in # the checkpoint. Skip them. continue # With tie_word_embeddings, we can skip lm_head.weight # The weight might appear unnecessarily in the files if the model is # processed with quantization, LoRA, fine-tuning, etc. if self.config.tie_word_embeddings and "lm_head.weight" in name: continue if self.quant_config is not None and ( scale_name := self.quant_config.get_cache_scale(name) ): # Loading kv cache scales for compressed-tensors quantization param = params_dict[scale_name] weight_loader = getattr(param, "weight_loader", default_weight_loader) loaded_weight = loaded_weight[0] weight_loader(param, loaded_weight) continue is_found = False for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue if "mlp.experts" in name: continue # cross layer only have q_proj, skip qkv pack if weight_name == ".q_proj": match = re.search(r"layers\.\d+", name) if match: layer_id = int(match.group(0).split(".")[-1]) if cla_factor > 1 and layer_id % cla_factor != 0: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) loaded_params.add(name) is_found = True break if is_found: continue for ( param_name, weight_name, den, split_param, func, ) in split_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if is_pp_missing_parameter(name, self): continue assert loaded_weight.shape[0] % den == 0 units = loaded_weight.shape[0] // den param = params_dict[name] weight_loader = param.weight_loader offset = 0 for shard_id, num in split_param: new_offset = offset + num * units if func: weight_loader( param, func(loaded_weight)[offset:new_offset], shard_id ) else: weight_loader(param, loaded_weight[offset:new_offset], shard_id) offset = new_offset break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue is_expert_weight = False for mapping in expert_params_mapping: param_name, weight_name, expert_id, shard_id = mapping if weight_name not in name: continue # this is an expert weight and should not be # attempted to load as other weights later is_expert_weight = True # Do not modify `name` since the loop may continue here # Instead, create a new variable name_mapped = name.replace(weight_name, param_name) if is_pp_missing_parameter(name_mapped, self): continue param = params_dict[name_mapped] # We should ask the weight loader to return success or not # here since otherwise we may skip experts with other # available replicas. weight_loader = typing.cast( Callable[..., bool], param.weight_loader ) success = weight_loader( param, loaded_weight, name_mapped, shard_id=shard_id, expert_id=expert_id, return_success=True, ) if success: name = name_mapped break else: if is_expert_weight: # We've checked that this is an expert weight # However it's not mapped locally to this rank # So we simply skip it continue # Remapping the name of FP8 kv-scale. name = maybe_remap_kv_scale_name(name, params_dict) if name is None: continue if is_pp_missing_parameter(name, self): continue if "mlp.gate.wg." in name: name = name.replace("wg.", "") param = params_dict[name] weight_loader = getattr( param, "weight_loader", default_weight_loader ) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class HunyuanV1ModelBase(nn.Module, SupportsLoRA, SupportsPP): packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], "gate_up_proj": [ "gate_proj", "up_proj", ], } def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config self.config = config self.quant_config = quant_config self.model = HunYuanModel(vllm_config=vllm_config, prefix="model") if get_pp_group().is_last_rank: self.lm_head = ParallelLMHead( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=maybe_prefix(prefix, "lm_head"), ) if config.tie_word_embeddings: self.lm_head.weight = self.model.embed_tokens.weight logit_scale = getattr(config, "logit_scale", 1.0) self.logits_processor = LogitsProcessor( config.vocab_size, scale=logit_scale ) else: self.lm_head = PPMissingLayer() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: model_output = self.model( input_ids, positions, intermediate_tensors, inputs_embeds ) return model_output def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: logits = self.logits_processor(self.lm_head, hidden_states) return logits def make_empty_intermediate_tensors( self, batch_size: int, dtype: torch.dtype, device: torch.device ) -> IntermediateTensors: return IntermediateTensors( { "hidden_states": torch.zeros( (batch_size, self.config.hidden_size), dtype=dtype, device=device ), "residual": torch.zeros( (batch_size, self.config.hidden_size), dtype=dtype, device=device ), } ) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader( self, skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None), ) return loader.load_weights(weights) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.embed_input_ids(input_ids) class HunYuanMoEV1Base(HunyuanV1ModelBase, MixtureOfExperts): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__(vllm_config=vllm_config, prefix=prefix) # Set MoE hyperparameters self.expert_weights = [] self.num_expert_groups = 1 self.moe_layers = [] example_layer = None for layer in self.model.layers: if isinstance(layer, PPMissingLayer): continue assert isinstance(layer, HunYuanDecoderLayer) if isinstance(layer.mlp, HunYuanSparseMoeBlock): example_layer = layer.mlp self.moe_layers.append(layer.mlp.experts) if example_layer is None: raise RuntimeError("No HunYuanMoE layer found in model.layers.") self.num_moe_layers = len(self.moe_layers) self.num_logical_experts = example_layer.n_logical_experts self.num_physical_experts = example_layer.n_physical_experts self.num_local_physical_experts = example_layer.n_local_physical_experts self.num_routed_experts = example_layer.n_routed_experts self.num_redundant_experts = example_layer.n_redundant_experts def update_physical_experts_metadata( self, num_physical_experts: int, num_local_physical_experts: int, ) -> None: assert self.num_local_physical_experts == num_local_physical_experts self.num_physical_experts = num_physical_experts self.num_local_physical_experts = num_local_physical_experts self.num_redundant_experts = num_physical_experts - self.num_logical_experts for layer in self.model.layers: if isinstance(layer.mlp, HunYuanSparseMoeBlock): moe = layer.mlp moe.n_local_physical_experts = num_local_physical_experts moe.n_physical_experts = num_physical_experts moe.n_redundant_experts = self.num_redundant_experts moe.experts.update_expert_map() def get_expert_mapping(self) -> list[tuple[str, str, int, str]]: return self.model.get_expert_mapping() class HunYuanDenseV1Base(HunyuanV1ModelBase): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__(vllm_config=vllm_config, prefix=prefix) class HunYuanDenseV1ForCausalLM(HunYuanDenseV1Base): pass class HunYuanMoEV1ForCausalLM(HunYuanMoEV1Base): pass