# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """Inference-only Jurassic model.""" from collections.abc import Iterable from itertools import islice from typing import Any import torch from torch import nn from vllm.attention import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, ModelConfig, VllmConfig from vllm.distributed import ( get_pp_group, get_tensor_model_parallel_world_size, tensor_model_parallel_all_reduce, ) from vllm.logger import init_logger from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import ( ColumnParallelLinear, MergedColumnParallelLinear, ReplicatedLinear, RowParallelLinear, ) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.sequence import IntermediateTensors from .interfaces import SupportsPP from .utils import ( PPMissingLayer, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix, ) logger = init_logger(__name__) class FusedMoEBlock(nn.Module): def __init__( self, config: ModelConfig, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.tp_size = get_tensor_model_parallel_world_size() if self.tp_size > config.moe_num_experts: raise ValueError( f"Tensor parallel size {self.tp_size} is greater than " f"the number of experts {config.moe_num_experts}." ) self.experts = FusedMoE( num_experts=config.moe_num_experts, top_k=config.moe_top_k, hidden_size=config.hidden_size, intermediate_size=config.moe_intermediate_size, reduce_results=False, renormalize=config.norm_expert_weight, quant_config=quant_config, prefix=f"{prefix}.experts", ) self.gate = ReplicatedLinear( config.hidden_size, config.moe_num_experts, bias=False, quant_config=None, prefix=f"{prefix}.gate", ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: orig_shape = hidden_states.shape hidden_dim = hidden_states.shape[-1] hidden_states = hidden_states.view(-1, hidden_dim) router_logits, _ = self.gate(hidden_states) final_hidden_states = self.experts( hidden_states=hidden_states, router_logits=router_logits ) if self.tp_size > 1: final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states) return final_hidden_states.view(orig_shape) class Step3TextMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, quant_config: QuantizationConfig | None = None, prefix: str = "", ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config, prefix=f"{prefix}.gate_up_proj", ) self.down_proj = RowParallelLinear( intermediate_size, hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.down_proj", ) if hidden_act != "silu": raise ValueError( f"Unsupported activation: {hidden_act}. Only silu is supported for now." ) self.act_fn = SiluAndMul() self.hidden_size = hidden_size def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: gate_up, _ = self.gate_up_proj(hidden_states) intermediate_act = self.act_fn(gate_up) output, _ = self.down_proj(intermediate_act) return output class Step3TextAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_kv_heads: int, norm_eps: float, rope_theta: int, share_q_dim: int | None = None, rope_scaling: dict[str, Any] | None = None, max_position_embedding: int = 8192, head_dim: int = 256, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size if num_kv_heads != 1: raise ValueError( f"Step3TextAttention num_kv_heads must be 1, but got {num_kv_heads}." ) self.num_kv_heads = num_kv_heads self.head_dim = head_dim self.kv_size = self.num_kv_heads * self.head_dim self.q_size = share_q_dim if share_q_dim else self.head_dim self.qkv_proj = ReplicatedLinear( hidden_size, self.q_size + self.kv_size * 2, bias=False, quant_config=quant_config, prefix=f"{prefix}.qkv_proj", ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.o_proj", ) self.inter_norm = RMSNorm(self.q_size, eps=norm_eps) self.wq = ColumnParallelLinear( self.q_size, self.head_dim * self.total_num_heads, bias=False, quant_config=quant_config, prefix=f"{prefix}.wq", ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embedding, base=rope_theta, rope_scaling=rope_scaling, ) scaling = self.head_dim**-0.5 self.attn = Attention( self.num_heads, self.head_dim, scaling, self.num_kv_heads, cache_config=cache_config, prefix=f"{prefix}.attn", ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q = self.inter_norm(q) q = self.wq(q)[0] q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v) residual, _ = self.o_proj(attn_output) return residual class Step3TextDecoderLayer(nn.Module): def __init__( self, config: ModelConfig, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ) -> None: super().__init__() config = config.hf_config self.hidden_size = config.hidden_size rope_scaling = getattr(config, "rope_scaling", None) self.self_attn = Step3TextAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=1, cache_config=cache_config, quant_config=quant_config, norm_eps=config.rms_norm_eps, max_position_embedding=config.max_position_embedding, head_dim=config.head_dim, share_q_dim=config.share_q_dim, rope_theta=config.rope_theta, rope_scaling=rope_scaling, prefix=f"{prefix}.self_attn", ) layer_idx = int(prefix.split("layers.")[1].split(".")[0]) moe_layers_enum = getattr(config, "moe_layers_enum", None) if moe_layers_enum is not None: moe_layers_idx = [int(i) for i in moe_layers_enum.strip().split(",")] else: # Default to 1dense. moe_layers_idx = [i for i in range(1, config.num_hidden_layers)] if layer_idx in moe_layers_idx: self.moe = FusedMoEBlock( config=config, quant_config=quant_config, prefix=f"{prefix}.moe" ) self.share_expert = Step3TextMLP( hidden_size=self.hidden_size, intermediate_size=config.share_expert_dim, hidden_act="silu", quant_config=quant_config, prefix=f"{prefix}.share_expert", ) self.use_moe = True else: self.mlp = Step3TextMLP( hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, hidden_act="silu", quant_config=quant_config, prefix=f"{prefix}.mlp", ) self.use_moe = False self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, residual: torch.Tensor | None, ) -> tuple[torch.Tensor, torch.Tensor]: if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, ) hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) if self.use_moe: share_output = self.share_expert(hidden_states) moe_output = self.moe(hidden_states) hidden_states = share_output + moe_output else: hidden_states = self.mlp(hidden_states) return hidden_states, residual @support_torch_compile class Step3TextModel(nn.Module): def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None: super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.vocab_size = config.vocab_size self.config = config if get_pp_group().is_first_rank or ( config.tie_word_embeddings and get_pp_group().is_last_rank ): self.embed_tokens = VocabParallelEmbedding( self.vocab_size, config.hidden_size, ) else: self.embed_tokens = PPMissingLayer() self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: Step3TextDecoderLayer( config=vllm_config.model_config, cache_config=cache_config, quant_config=quant_config, prefix=prefix, ), prefix=f"{prefix}.layers", ) if get_pp_group().is_last_rank: self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) else: self.norm = PPMissingLayer() self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( ["hidden_states"], config.hidden_size ) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.get_input_embeddings(input_ids) residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] residual = intermediate_tensors["residual"] for layer in islice(self.layers, self.start_layer, self.end_layer): hidden_states, residual = layer(positions, hidden_states, residual) if not get_pp_group().is_last_rank: return IntermediateTensors( { "hidden_states": hidden_states, "residual": residual, } ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class Step3TextForCausalLM(nn.Module, SupportsPP): def __init__( self, *, vllm_config: VllmConfig, prefix: str = "", ): super().__init__() config = vllm_config.model_config.hf_config lora_config = vllm_config.lora_config self.config = config self.vllm_config = vllm_config self.model = Step3TextModel(vllm_config=vllm_config, prefix=prefix) if get_pp_group().is_last_rank: self.unpadded_vocab_size = config.vocab_size if lora_config: self.unpadded_vocab_size += lora_config.lora_extra_vocab_size self.lm_head = ParallelLMHead( self.unpadded_vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size, padding_size=DEFAULT_VOCAB_PADDING_SIZE if not lora_config else lora_config.lora_vocab_padding_size, prefix=maybe_prefix(prefix, "lm_head"), ) self.logits_processor = LogitsProcessor( self.unpadded_vocab_size, config.vocab_size ) else: self.lm_head = PPMissingLayer() self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors ) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.get_input_embeddings(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ): hidden_states = self.model( input_ids, positions, intermediate_tensors, inputs_embeds ) return hidden_states def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor: logits = self.logits_processor(self.lm_head, hidden_states) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: qkv_params_mapping = [ # (param_name, shard_name, relative_start_idx, relative_end_idx) ( ".qkv_proj", ".q_proj", 0, self.config.share_q_dim / (self.config.share_q_dim + self.config.head_dim * 2), ), ( ".qkv_proj", ".k_proj", self.config.share_q_dim / (self.config.share_q_dim + self.config.head_dim * 2), (self.config.share_q_dim + self.config.head_dim) / (self.config.share_q_dim + self.config.head_dim * 2), ), ( ".qkv_proj", ".v_proj", (self.config.share_q_dim + self.config.head_dim) / (self.config.share_q_dim + self.config.head_dim * 2), (self.config.share_q_dim + self.config.head_dim * 2) / (self.config.share_q_dim + self.config.head_dim * 2), ), ] stacked_params_mapping = [ # (param_name, shard_name, shard_id) (".gate_up_proj", ".gate_proj", 0), (".gate_up_proj", ".up_proj", 1), ] params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() expert_params_mapping = [ (".moe.experts.w13_weight", ".moe.gate_proj.weight", "w1"), (".moe.experts.w13_weight", ".moe.up_proj.weight", "w3"), (".moe.experts.w2_weight", ".moe.down_proj.weight", "w2"), ] disable_moe_stacked_params = [data[1] for data in expert_params_mapping] for name, loaded_weight in weights: for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue if any( disable_moe_stacked_param in name for disable_moe_stacked_param in disable_moe_stacked_params ): continue name = name.replace(weight_name, param_name) if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) loaded_params.add(name) break else: for mapping in expert_params_mapping: param_name, weight_name, shard_id = mapping if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip layers on other devices. if is_pp_missing_parameter(name, self): continue # Skip loading extra bias for GPTQ models. if ( name.endswith(".bias") or name.endswith("_bias") ) and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader for expert_id in range(loaded_weight.shape[0]): loaded_weight_expert = loaded_weight[expert_id] weight_loader( param, loaded_weight_expert, name, shard_id=shard_id, expert_id=expert_id, ) loaded_params.add(name) break else: for ( param_name, weight_name, start_idx, end_idx, ) in qkv_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) if is_pp_missing_parameter(name, self): continue param = params_dict[name] dim = param.shape[param.output_dim] begin_idx = int(start_idx * dim) end_idx = int(end_idx * dim) param_slice = param.narrow( param.output_dim, begin_idx, end_idx - begin_idx ) param_slice.copy_(loaded_weight) loaded_params.add(name) break else: if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = getattr( param, "weight_loader", default_weight_loader ) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params