# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from typing import List from vllm.config import SchedulerConfig from vllm.core.scheduler import Scheduler from vllm.engine.output_processor.interfaces import ( SequenceGroupOutputProcessor) from vllm.engine.output_processor.stop_checker import StopChecker from vllm.logger import init_logger from vllm.sequence import (CompletionSequenceGroupOutput, SequenceGroup, SequenceGroupOutput) from vllm.transformers_utils.detokenizer import Detokenizer from vllm.utils import Counter logger = init_logger(__name__) def single_step_process_prompt_logprob( sg_output_proc: SequenceGroupOutputProcessor, seq_group: SequenceGroup, output: CompletionSequenceGroupOutput) -> None: """Process prompt logprobs associated with the [`SequenceGroupOutput`][vllm.sequence.SequenceGroupOutput] for a given step. Do nothing if the output has no prompt logprobs. Account for the fact that transformers do not compute first-token logprobs. Args: sg_output_proc: [`SequenceGroupOutputProcessor`][vllm.engine.output_processor.interfaces.SequenceGroupOutputProcessor] instance seq_group: the output is associated with this [`SequenceGroup`][vllm.sequence.SequenceGroup] output: the [`SequenceGroupOutput`][vllm.sequence.SequenceGroupOutput] for a single scheduler step """ prompt_logprobs = output.prompt_logprobs # If this is the first (or only) "chunk" of the prefill, we need # to prepend None to the list of prompt logprobs. The reason for this # is that for N prompt tokens, the Sampler will generate N-1 total # prompt logprobs during prefill since the token at idx 0 will not # have a logprob associated with it. if prompt_logprobs is not None: if not seq_group.prompt_logprobs: prompt_logprobs = [None] + prompt_logprobs seq_group.prompt_logprobs = [] assert hasattr(sg_output_proc, 'detokenizer') if (seq_group.sampling_params.detokenize and sg_output_proc.detokenizer): sg_output_proc.detokenizer.decode_prompt_logprobs_inplace( seq_group, prompt_logprobs, position_offset=len(seq_group.prompt_logprobs)) seq_group.prompt_logprobs.extend(prompt_logprobs) class SingleStepOutputProcessor(SequenceGroupOutputProcessor): """SequenceGroupOutputProcessor which handles "output processing" logic, which happens after the model returns generated token ids and before scheduling of the next batch. Output processing logic includes detokenization, and determining if a sequence is finished (e.g. via max len or eos token). The SingleStepOutputProcessor is specialized to the case where the model emits at most a single token per invocation, which precludes configurations such as speculative decoding or multi-step decoding. This enables beam search sampling, which requires forking/finishing/freeing sequences in a way that is currently difficult to schedule multiple steps ahead of time. """ def __init__(self, scheduler_config: SchedulerConfig, detokenizer: Detokenizer, scheduler: List[Scheduler], seq_counter: Counter, stop_checker: StopChecker): self.scheduler_config = scheduler_config self.detokenizer = detokenizer self.scheduler = scheduler self.seq_counter = seq_counter self.stop_checker = stop_checker def process_outputs(self, sequence_group: SequenceGroup, outputs: List[SequenceGroupOutput], is_async: bool) -> None: """Append all new tokens to sequences in the sequence group. Fork any surviving beam candidates; free any unsurviving ones. Invokes detokenizer to detokenize new tokens, and also marks sequences as finished if they meet stop conditions. is_async - Indicates whether this postprocessor runs in parallel with the GPU forward pass and is processing tokens from the previous step. If this is true, then no tokens need to be appended since it is already done externally (before the next schedule() call) """ assert (len(outputs) == 1 ), f"{type(self)} does not support multiple outputs per step" return self._process_sequence_group_outputs(sequence_group, outputs[0], is_async) def process_prompt_logprob(self, seq_group: SequenceGroup, outputs: List[SequenceGroupOutput]) -> None: """Process prompt logprobs associated with one step of a single-step- scheduled computation. Args: seq_group: the output is associated with this [`SequenceGroup`][vllm.sequence.SequenceGroup] outputs: the [`SequenceGroupOutput`][vllm.sequence.SequenceGroupOutput] for a single scheduler step """ assert len(outputs) == 1, "Single step should only have 1 output." output = outputs[0] assert isinstance(output, CompletionSequenceGroupOutput) single_step_process_prompt_logprob(self, seq_group, output) def _process_sequence_group_outputs(self, seq_group: SequenceGroup, outputs: SequenceGroupOutput, is_async: bool) -> None: sampling_params = seq_group.sampling_params sample = outputs.samples[0] seq = seq_group.first_seq if not is_async: seq.append_token_id(sample.output_token, sample.logprobs, sample.output_embed) if sampling_params.detokenize and self.detokenizer: new_char_count = self.detokenizer.decode_sequence_inplace( seq, sampling_params) else: new_char_count = 0 self.stop_checker.maybe_stop_sequence( seq, new_char_count, sampling_params, lora_req=seq_group.lora_request, ) if seq.is_finished(): for scheduler in self.scheduler: scheduler.free_seq(seq)