# SPDX-License-Identifier: Apache-2.0 import asyncio import atexit import gc import importlib import inspect import multiprocessing import os import re import signal import socket import tempfile import uuid from argparse import Namespace from collections.abc import AsyncIterator from contextlib import asynccontextmanager from functools import partial from http import HTTPStatus from typing import Annotated, Optional, Union import uvloop from fastapi import APIRouter, Depends, FastAPI, Form, HTTPException, Request from fastapi.exceptions import RequestValidationError from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse, Response, StreamingResponse from starlette.concurrency import iterate_in_threadpool from starlette.datastructures import State from starlette.routing import Mount from typing_extensions import assert_never import vllm.envs as envs from vllm.config import ModelConfig from vllm.engine.arg_utils import AsyncEngineArgs from vllm.engine.async_llm_engine import AsyncLLMEngine # type: ignore from vllm.engine.multiprocessing.client import MQLLMEngineClient from vllm.engine.multiprocessing.engine import run_mp_engine from vllm.engine.protocol import EngineClient from vllm.entrypoints.chat_utils import (load_chat_template, resolve_hf_chat_template, resolve_mistral_chat_template) from vllm.entrypoints.launcher import serve_http from vllm.entrypoints.logger import RequestLogger from vllm.entrypoints.openai.cli_args import (make_arg_parser, validate_parsed_serve_args) # yapf conflicts with isort for this block # yapf: disable from vllm.entrypoints.openai.protocol import (ChatCompletionRequest, ChatCompletionResponse, CompletionRequest, CompletionResponse, DetokenizeRequest, DetokenizeResponse, EmbeddingChatRequest, EmbeddingCompletionRequest, EmbeddingRequest, EmbeddingResponse, EmbeddingResponseData, ErrorResponse, LoadLoRAAdapterRequest, PoolingChatRequest, PoolingCompletionRequest, PoolingRequest, PoolingResponse, RerankRequest, RerankResponse, ScoreRequest, ScoreResponse, TokenizeRequest, TokenizeResponse, TranscriptionRequest, TranscriptionResponse, UnloadLoRAAdapterRequest) # yapf: enable from vllm.entrypoints.openai.serving_chat import OpenAIServingChat from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding from vllm.entrypoints.openai.serving_engine import OpenAIServing from vllm.entrypoints.openai.serving_models import (BaseModelPath, OpenAIServingModels) from vllm.entrypoints.openai.serving_pooling import OpenAIServingPooling from vllm.entrypoints.openai.serving_score import ServingScores from vllm.entrypoints.openai.serving_tokenization import ( OpenAIServingTokenization) from vllm.entrypoints.openai.serving_transcription import ( OpenAIServingTranscription) from vllm.entrypoints.openai.tool_parsers import ToolParserManager from vllm.entrypoints.utils import load_aware_call, with_cancellation from vllm.logger import init_logger from vllm.reasoning import ReasoningParserManager from vllm.transformers_utils.config import ( maybe_register_config_serialize_by_value) from vllm.transformers_utils.tokenizer import MistralTokenizer from vllm.usage.usage_lib import UsageContext from vllm.utils import (Device, FlexibleArgumentParser, get_open_zmq_ipc_path, is_valid_ipv6_address, set_ulimit) from vllm.version import __version__ as VLLM_VERSION TIMEOUT_KEEP_ALIVE = 5 # seconds prometheus_multiproc_dir: tempfile.TemporaryDirectory # Cannot use __name__ (https://github.com/vllm-project/vllm/pull/4765) logger = init_logger('vllm.entrypoints.openai.api_server') _running_tasks: set[asyncio.Task] = set() @asynccontextmanager async def lifespan(app: FastAPI): try: if app.state.log_stats: engine_client: EngineClient = app.state.engine_client async def _force_log(): while True: await asyncio.sleep(10.) await engine_client.do_log_stats() task = asyncio.create_task(_force_log()) _running_tasks.add(task) task.add_done_callback(_running_tasks.remove) else: task = None # Mark the startup heap as static so that it's ignored by GC. # Reduces pause times of oldest generation collections. gc.collect() gc.freeze() try: yield finally: if task is not None: task.cancel() finally: # Ensure app state including engine ref is gc'd del app.state @asynccontextmanager async def build_async_engine_client( args: Namespace) -> AsyncIterator[EngineClient]: # Context manager to handle engine_client lifecycle # Ensures everything is shutdown and cleaned up on error/exit engine_args = AsyncEngineArgs.from_cli_args(args) async with build_async_engine_client_from_engine_args( engine_args, args.disable_frontend_multiprocessing) as engine: yield engine @asynccontextmanager async def build_async_engine_client_from_engine_args( engine_args: AsyncEngineArgs, disable_frontend_multiprocessing: bool = False, ) -> AsyncIterator[EngineClient]: """ Create EngineClient, either: - in-process using the AsyncLLMEngine Directly - multiprocess using AsyncLLMEngine RPC Returns the Client or None if the creation failed. """ # Create the EngineConfig (determines if we can use V1). usage_context = UsageContext.OPENAI_API_SERVER vllm_config = engine_args.create_engine_config(usage_context=usage_context) # V1 AsyncLLM. if envs.VLLM_USE_V1: if disable_frontend_multiprocessing: logger.warning( "V1 is enabled, but got --disable-frontend-multiprocessing. " "To disable frontend multiprocessing, set VLLM_USE_V1=0.") from vllm.v1.engine.async_llm import AsyncLLM async_llm: Optional[AsyncLLM] = None try: async_llm = AsyncLLM.from_vllm_config( vllm_config=vllm_config, usage_context=usage_context, disable_log_requests=engine_args.disable_log_requests, disable_log_stats=engine_args.disable_log_stats) yield async_llm finally: if async_llm: async_llm.shutdown() # V0 AsyncLLM. elif (MQLLMEngineClient.is_unsupported_config(vllm_config) or disable_frontend_multiprocessing): engine_client: Optional[EngineClient] = None try: engine_client = AsyncLLMEngine.from_vllm_config( vllm_config=vllm_config, usage_context=usage_context, disable_log_requests=engine_args.disable_log_requests, disable_log_stats=engine_args.disable_log_stats) yield engine_client finally: if engine_client and hasattr(engine_client, "shutdown"): engine_client.shutdown() # V0MQLLMEngine. else: if "PROMETHEUS_MULTIPROC_DIR" not in os.environ: # Make TemporaryDirectory for prometheus multiprocessing # Note: global TemporaryDirectory will be automatically # cleaned up upon exit. global prometheus_multiproc_dir prometheus_multiproc_dir = tempfile.TemporaryDirectory() os.environ[ "PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name else: logger.warning( "Found PROMETHEUS_MULTIPROC_DIR was set by user. " "This directory must be wiped between vLLM runs or " "you will find inaccurate metrics. Unset the variable " "and vLLM will properly handle cleanup.") # Select random path for IPC. ipc_path = get_open_zmq_ipc_path() logger.debug("Multiprocessing frontend to use %s for IPC Path.", ipc_path) # Start RPCServer in separate process (holds the LLMEngine). # the current process might have CUDA context, # so we need to spawn a new process context = multiprocessing.get_context("spawn") # Ensure we can serialize transformer config before spawning maybe_register_config_serialize_by_value() # The Process can raise an exception during startup, which may # not actually result in an exitcode being reported. As a result # we use a shared variable to communicate the information. engine_alive = multiprocessing.Value('b', True, lock=False) engine_process = context.Process( target=run_mp_engine, args=(vllm_config, UsageContext.OPENAI_API_SERVER, ipc_path, engine_args.disable_log_stats, engine_args.disable_log_requests, engine_alive)) engine_process.start() engine_pid = engine_process.pid assert engine_pid is not None, "Engine process failed to start." logger.info("Started engine process with PID %d", engine_pid) def _cleanup_ipc_path(): socket_path = ipc_path.replace("ipc://", "") if os.path.exists(socket_path): os.remove(socket_path) # Ensure we clean up the local IPC socket file on exit. atexit.register(_cleanup_ipc_path) # Build RPCClient, which conforms to EngineClient Protocol. build_client = partial(MQLLMEngineClient, ipc_path, vllm_config, engine_pid) mq_engine_client = await asyncio.get_running_loop().run_in_executor( None, build_client) try: while True: try: await mq_engine_client.setup() break except TimeoutError: if (not engine_process.is_alive() or not engine_alive.value): raise RuntimeError( "Engine process failed to start. See stack " "trace for the root cause.") from None yield mq_engine_client # type: ignore[misc] finally: # Ensure rpc server process was terminated engine_process.terminate() # Close all open connections to the backend mq_engine_client.close() # Wait for engine process to join engine_process.join(4) if engine_process.exitcode is None: # Kill if taking longer than 5 seconds to stop engine_process.kill() # Lazy import for prometheus multiprocessing. # We need to set PROMETHEUS_MULTIPROC_DIR environment variable # before prometheus_client is imported. # See https://prometheus.github.io/client_python/multiprocess/ from prometheus_client import multiprocess multiprocess.mark_process_dead(engine_process.pid) async def validate_json_request(raw_request: Request): content_type = raw_request.headers.get("content-type", "").lower() media_type = content_type.split(";", maxsplit=1)[0] if media_type != "application/json": raise HTTPException( status_code=HTTPStatus.UNSUPPORTED_MEDIA_TYPE, detail="Unsupported Media Type: Only 'application/json' is allowed" ) router = APIRouter() def mount_metrics(app: FastAPI): # Lazy import for prometheus multiprocessing. # We need to set PROMETHEUS_MULTIPROC_DIR environment variable # before prometheus_client is imported. # See https://prometheus.github.io/client_python/multiprocess/ from prometheus_client import (CollectorRegistry, make_asgi_app, multiprocess) prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None) if prometheus_multiproc_dir_path is not None: logger.debug("vLLM to use %s as PROMETHEUS_MULTIPROC_DIR", prometheus_multiproc_dir_path) registry = CollectorRegistry() multiprocess.MultiProcessCollector(registry) # Add prometheus asgi middleware to route /metrics requests metrics_route = Mount("/metrics", make_asgi_app(registry=registry)) else: # Add prometheus asgi middleware to route /metrics requests metrics_route = Mount("/metrics", make_asgi_app()) # Workaround for 307 Redirect for /metrics metrics_route.path_regex = re.compile("^/metrics(?P.*)$") app.routes.append(metrics_route) def base(request: Request) -> OpenAIServing: # Reuse the existing instance return tokenization(request) def models(request: Request) -> OpenAIServingModels: return request.app.state.openai_serving_models def chat(request: Request) -> Optional[OpenAIServingChat]: return request.app.state.openai_serving_chat def completion(request: Request) -> Optional[OpenAIServingCompletion]: return request.app.state.openai_serving_completion def pooling(request: Request) -> Optional[OpenAIServingPooling]: return request.app.state.openai_serving_pooling def embedding(request: Request) -> Optional[OpenAIServingEmbedding]: return request.app.state.openai_serving_embedding def score(request: Request) -> Optional[ServingScores]: return request.app.state.openai_serving_scores def rerank(request: Request) -> Optional[ServingScores]: return request.app.state.openai_serving_scores def tokenization(request: Request) -> OpenAIServingTokenization: return request.app.state.openai_serving_tokenization def transcription(request: Request) -> OpenAIServingTranscription: return request.app.state.openai_serving_transcription def engine_client(request: Request) -> EngineClient: return request.app.state.engine_client @router.get("/health") async def health(raw_request: Request) -> Response: """Health check.""" await engine_client(raw_request).check_health() return Response(status_code=200) @router.get("/load") async def get_server_load_metrics(request: Request): # This endpoint returns the current server load metrics. # It tracks requests utilizing the GPU from the following routes: # - /v1/chat/completions # - /v1/completions # - /v1/audio/transcriptions # - /v1/embeddings # - /pooling # - /score # - /v1/score # - /rerank # - /v1/rerank # - /v2/rerank return JSONResponse( content={'server_load': request.app.state.server_load_metrics}) @router.api_route("/ping", methods=["GET", "POST"]) async def ping(raw_request: Request) -> Response: """Ping check. Endpoint required for SageMaker""" return await health(raw_request) @router.post("/tokenize", dependencies=[Depends(validate_json_request)]) @with_cancellation async def tokenize(request: TokenizeRequest, raw_request: Request): handler = tokenization(raw_request) generator = await handler.create_tokenize(request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) elif isinstance(generator, TokenizeResponse): return JSONResponse(content=generator.model_dump()) assert_never(generator) @router.post("/detokenize", dependencies=[Depends(validate_json_request)]) @with_cancellation async def detokenize(request: DetokenizeRequest, raw_request: Request): handler = tokenization(raw_request) generator = await handler.create_detokenize(request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) elif isinstance(generator, DetokenizeResponse): return JSONResponse(content=generator.model_dump()) assert_never(generator) @router.get("/v1/models") async def show_available_models(raw_request: Request): handler = models(raw_request) models_ = await handler.show_available_models() return JSONResponse(content=models_.model_dump()) @router.get("/version") async def show_version(): ver = {"version": VLLM_VERSION} return JSONResponse(content=ver) @router.post("/v1/chat/completions", dependencies=[Depends(validate_json_request)]) @with_cancellation @load_aware_call async def create_chat_completion(request: ChatCompletionRequest, raw_request: Request): handler = chat(raw_request) if handler is None: return base(raw_request).create_error_response( message="The model does not support Chat Completions API") generator = await handler.create_chat_completion(request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) elif isinstance(generator, ChatCompletionResponse): return JSONResponse(content=generator.model_dump()) return StreamingResponse(content=generator, media_type="text/event-stream") @router.post("/v1/completions", dependencies=[Depends(validate_json_request)]) @with_cancellation @load_aware_call async def create_completion(request: CompletionRequest, raw_request: Request): handler = completion(raw_request) if handler is None: return base(raw_request).create_error_response( message="The model does not support Completions API") generator = await handler.create_completion(request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) elif isinstance(generator, CompletionResponse): return JSONResponse(content=generator.model_dump()) return StreamingResponse(content=generator, media_type="text/event-stream") @router.post("/v1/embeddings", dependencies=[Depends(validate_json_request)]) @with_cancellation @load_aware_call async def create_embedding(request: EmbeddingRequest, raw_request: Request): handler = embedding(raw_request) if handler is None: fallback_handler = pooling(raw_request) if fallback_handler is None: return base(raw_request).create_error_response( message="The model does not support Embeddings API") logger.warning( "Embeddings API will become exclusive to embedding models " "in a future release. To return the hidden states directly, " "use the Pooling API (`/pooling`) instead.") res = await fallback_handler.create_pooling(request, raw_request) generator: Union[ErrorResponse, EmbeddingResponse] if isinstance(res, PoolingResponse): generator = EmbeddingResponse( id=res.id, object=res.object, created=res.created, model=res.model, data=[ EmbeddingResponseData( index=d.index, embedding=d.data, # type: ignore ) for d in res.data ], usage=res.usage, ) else: generator = res else: generator = await handler.create_embedding(request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) elif isinstance(generator, EmbeddingResponse): return JSONResponse(content=generator.model_dump()) assert_never(generator) @router.post("/pooling", dependencies=[Depends(validate_json_request)]) @with_cancellation @load_aware_call async def create_pooling(request: PoolingRequest, raw_request: Request): handler = pooling(raw_request) if handler is None: return base(raw_request).create_error_response( message="The model does not support Pooling API") generator = await handler.create_pooling(request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) elif isinstance(generator, PoolingResponse): return JSONResponse(content=generator.model_dump()) assert_never(generator) @router.post("/score", dependencies=[Depends(validate_json_request)]) @with_cancellation @load_aware_call async def create_score(request: ScoreRequest, raw_request: Request): handler = score(raw_request) if handler is None: return base(raw_request).create_error_response( message="The model does not support Score API") generator = await handler.create_score(request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) elif isinstance(generator, ScoreResponse): return JSONResponse(content=generator.model_dump()) assert_never(generator) @router.post("/v1/score", dependencies=[Depends(validate_json_request)]) @with_cancellation @load_aware_call async def create_score_v1(request: ScoreRequest, raw_request: Request): logger.warning( "To indicate that Score API is not part of standard OpenAI API, we " "have moved it to `/score`. Please update your client accordingly.") return await create_score(request, raw_request) @router.post("/v1/audio/transcriptions") @with_cancellation @load_aware_call async def create_transcriptions(request: Annotated[TranscriptionRequest, Form()], raw_request: Request): handler = transcription(raw_request) if handler is None: return base(raw_request).create_error_response( message="The model does not support Transcriptions API") audio_data = await request.file.read() generator = await handler.create_transcription(audio_data, request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) elif isinstance(generator, TranscriptionResponse): return JSONResponse(content=generator.model_dump()) return StreamingResponse(content=generator, media_type="text/event-stream") @router.post("/rerank", dependencies=[Depends(validate_json_request)]) @with_cancellation @load_aware_call async def do_rerank(request: RerankRequest, raw_request: Request): handler = rerank(raw_request) if handler is None: return base(raw_request).create_error_response( message="The model does not support Rerank (Score) API") generator = await handler.do_rerank(request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) elif isinstance(generator, RerankResponse): return JSONResponse(content=generator.model_dump()) assert_never(generator) @router.post("/v1/rerank", dependencies=[Depends(validate_json_request)]) @with_cancellation async def do_rerank_v1(request: RerankRequest, raw_request: Request): logger.warning_once( "To indicate that the rerank API is not part of the standard OpenAI" " API, we have located it at `/rerank`. Please update your client " "accordingly. (Note: Conforms to JinaAI rerank API)") return await do_rerank(request, raw_request) @router.post("/v2/rerank", dependencies=[Depends(validate_json_request)]) @with_cancellation async def do_rerank_v2(request: RerankRequest, raw_request: Request): return await do_rerank(request, raw_request) TASK_HANDLERS: dict[str, dict[str, tuple]] = { "generate": { "messages": (ChatCompletionRequest, create_chat_completion), "default": (CompletionRequest, create_completion), }, "embed": { "messages": (EmbeddingChatRequest, create_embedding), "default": (EmbeddingCompletionRequest, create_embedding), }, "score": { "default": (RerankRequest, do_rerank) }, "rerank": { "default": (RerankRequest, do_rerank) }, "reward": { "messages": (PoolingChatRequest, create_pooling), "default": (PoolingCompletionRequest, create_pooling), }, "classify": { "messages": (PoolingChatRequest, create_pooling), "default": (PoolingCompletionRequest, create_pooling), }, } if envs.VLLM_SERVER_DEV_MODE: @router.post("/reset_prefix_cache") async def reset_prefix_cache(raw_request: Request): """ Reset the prefix cache. Note that we currently do not check if the prefix cache is successfully reset in the API server. """ device = None device_str = raw_request.query_params.get("device") if device_str is not None: device = Device[device_str.upper()] logger.info("Resetting prefix cache with specific %s...", str(device)) await engine_client(raw_request).reset_prefix_cache(device) return Response(status_code=200) @router.post("/sleep") async def sleep(raw_request: Request): # get POST params level = raw_request.query_params.get("level", "1") logger.info("sleep the engine with level %s", level) await engine_client(raw_request).sleep(int(level)) # FIXME: in v0 with frontend multiprocessing, the sleep command # is sent but does not finish yet when we return a response. return Response(status_code=200) @router.post("/wake_up") async def wake_up(raw_request: Request): logger.info("wake up the engine") await engine_client(raw_request).wake_up() # FIXME: in v0 with frontend multiprocessing, the wake-up command # is sent but does not finish yet when we return a response. return Response(status_code=200) @router.get("/is_sleeping") async def is_sleeping(raw_request: Request): logger.info("check whether the engine is sleeping") is_sleeping = await engine_client(raw_request).is_sleeping() return JSONResponse(content={"is_sleeping": is_sleeping}) @router.post("/invocations", dependencies=[Depends(validate_json_request)]) async def invocations(raw_request: Request): """ For SageMaker, routes requests to other handlers based on model `task`. """ body = await raw_request.json() task = raw_request.app.state.task if task not in TASK_HANDLERS: raise HTTPException( status_code=400, detail=f"Unsupported task: '{task}' for '/invocations'. " f"Expected one of {set(TASK_HANDLERS.keys())}") handler_config = TASK_HANDLERS[task] if "messages" in body: request_model, handler = handler_config["messages"] else: request_model, handler = handler_config["default"] # this is required since we lose the FastAPI automatic casting request = request_model.model_validate(body) return await handler(request, raw_request) if envs.VLLM_TORCH_PROFILER_DIR: logger.warning( "Torch Profiler is enabled in the API server. This should ONLY be " "used for local development!") @router.post("/start_profile") async def start_profile(raw_request: Request): logger.info("Starting profiler...") await engine_client(raw_request).start_profile() logger.info("Profiler started.") return Response(status_code=200) @router.post("/stop_profile") async def stop_profile(raw_request: Request): logger.info("Stopping profiler...") await engine_client(raw_request).stop_profile() logger.info("Profiler stopped.") return Response(status_code=200) if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING: logger.warning( "LoRA dynamic loading & unloading is enabled in the API server. " "This should ONLY be used for local development!") @router.post("/v1/load_lora_adapter", dependencies=[Depends(validate_json_request)]) async def load_lora_adapter(request: LoadLoRAAdapterRequest, raw_request: Request): handler = models(raw_request) response = await handler.load_lora_adapter(request) if isinstance(response, ErrorResponse): return JSONResponse(content=response.model_dump(), status_code=response.code) return Response(status_code=200, content=response) @router.post("/v1/unload_lora_adapter", dependencies=[Depends(validate_json_request)]) async def unload_lora_adapter(request: UnloadLoRAAdapterRequest, raw_request: Request): handler = models(raw_request) response = await handler.unload_lora_adapter(request) if isinstance(response, ErrorResponse): return JSONResponse(content=response.model_dump(), status_code=response.code) return Response(status_code=200, content=response) def build_app(args: Namespace) -> FastAPI: if args.disable_fastapi_docs: app = FastAPI(openapi_url=None, docs_url=None, redoc_url=None, lifespan=lifespan) else: app = FastAPI(lifespan=lifespan) app.include_router(router) app.root_path = args.root_path mount_metrics(app) app.add_middleware( CORSMiddleware, allow_origins=args.allowed_origins, allow_credentials=args.allow_credentials, allow_methods=args.allowed_methods, allow_headers=args.allowed_headers, ) @app.exception_handler(RequestValidationError) async def validation_exception_handler(_, exc): err = ErrorResponse(message=str(exc), type="BadRequestError", code=HTTPStatus.BAD_REQUEST) return JSONResponse(err.model_dump(), status_code=HTTPStatus.BAD_REQUEST) if token := envs.VLLM_API_KEY or args.api_key: @app.middleware("http") async def authentication(request: Request, call_next): if request.method == "OPTIONS": return await call_next(request) url_path = request.url.path if app.root_path and url_path.startswith(app.root_path): url_path = url_path[len(app.root_path):] if not url_path.startswith("/v1"): return await call_next(request) if request.headers.get("Authorization") != "Bearer " + token: return JSONResponse(content={"error": "Unauthorized"}, status_code=401) return await call_next(request) if args.enable_request_id_headers: logger.warning( "CAUTION: Enabling X-Request-Id headers in the API Server. " "This can harm performance at high QPS.") @app.middleware("http") async def add_request_id(request: Request, call_next): request_id = request.headers.get( "X-Request-Id") or uuid.uuid4().hex response = await call_next(request) response.headers["X-Request-Id"] = request_id return response if envs.VLLM_DEBUG_LOG_API_SERVER_RESPONSE: logger.warning("CAUTION: Enabling log response in the API Server. " "This can include sensitive information and should be " "avoided in production.") @app.middleware("http") async def log_response(request: Request, call_next): response = await call_next(request) response_body = [ section async for section in response.body_iterator ] response.body_iterator = iterate_in_threadpool(iter(response_body)) logger.info("response_body={%s}", response_body[0].decode()) return response for middleware in args.middleware: module_path, object_name = middleware.rsplit(".", 1) imported = getattr(importlib.import_module(module_path), object_name) if inspect.isclass(imported): app.add_middleware(imported) # type: ignore[arg-type] elif inspect.iscoroutinefunction(imported): app.middleware("http")(imported) else: raise ValueError(f"Invalid middleware {middleware}. " f"Must be a function or a class.") return app async def init_app_state( engine_client: EngineClient, model_config: ModelConfig, state: State, args: Namespace, ) -> None: if args.served_model_name is not None: served_model_names = args.served_model_name else: served_model_names = [args.model] if args.disable_log_requests: request_logger = None else: request_logger = RequestLogger(max_log_len=args.max_log_len) base_model_paths = [ BaseModelPath(name=name, model_path=args.model) for name in served_model_names ] state.engine_client = engine_client state.log_stats = not args.disable_log_stats resolved_chat_template = load_chat_template(args.chat_template) if resolved_chat_template is not None: # Get the tokenizer to check official template tokenizer = await engine_client.get_tokenizer() if isinstance(tokenizer, MistralTokenizer): # The warning is logged in resolve_mistral_chat_template. resolved_chat_template = resolve_mistral_chat_template( chat_template=resolved_chat_template) else: hf_chat_template = resolve_hf_chat_template( tokenizer, chat_template=None, tools=None, trust_remote_code=model_config.trust_remote_code) if hf_chat_template != resolved_chat_template: logger.warning( "Using supplied chat template: %s\n" "It is different from official chat template '%s'. " "This discrepancy may lead to performance degradation.", resolved_chat_template, args.model) state.openai_serving_models = OpenAIServingModels( engine_client=engine_client, model_config=model_config, base_model_paths=base_model_paths, lora_modules=args.lora_modules, prompt_adapters=args.prompt_adapters, ) await state.openai_serving_models.init_static_loras() state.openai_serving_chat = OpenAIServingChat( engine_client, model_config, state.openai_serving_models, args.response_role, request_logger=request_logger, chat_template=resolved_chat_template, chat_template_content_format=args.chat_template_content_format, return_tokens_as_token_ids=args.return_tokens_as_token_ids, enable_auto_tools=args.enable_auto_tool_choice, tool_parser=args.tool_call_parser, enable_reasoning=args.enable_reasoning, reasoning_parser=args.reasoning_parser, enable_prompt_tokens_details=args.enable_prompt_tokens_details, ) if model_config.runner_type == "generate" else None state.openai_serving_completion = OpenAIServingCompletion( engine_client, model_config, state.openai_serving_models, request_logger=request_logger, return_tokens_as_token_ids=args.return_tokens_as_token_ids, ) if model_config.runner_type == "generate" else None state.openai_serving_pooling = OpenAIServingPooling( engine_client, model_config, state.openai_serving_models, request_logger=request_logger, chat_template=resolved_chat_template, chat_template_content_format=args.chat_template_content_format, ) if model_config.runner_type == "pooling" else None state.openai_serving_embedding = OpenAIServingEmbedding( engine_client, model_config, state.openai_serving_models, request_logger=request_logger, chat_template=resolved_chat_template, chat_template_content_format=args.chat_template_content_format, ) if model_config.task == "embed" else None state.openai_serving_scores = ServingScores( engine_client, model_config, state.openai_serving_models, request_logger=request_logger) if model_config.task in ( "score", "embed", "pooling") else None state.jinaai_serving_reranking = ServingScores( engine_client, model_config, state.openai_serving_models, request_logger=request_logger ) if model_config.task == "score" else None state.openai_serving_tokenization = OpenAIServingTokenization( engine_client, model_config, state.openai_serving_models, request_logger=request_logger, chat_template=resolved_chat_template, chat_template_content_format=args.chat_template_content_format, ) state.openai_serving_transcription = OpenAIServingTranscription( engine_client, model_config, state.openai_serving_models, request_logger=request_logger, ) if model_config.runner_type == "transcription" else None state.task = model_config.task state.enable_server_load_tracking = args.enable_server_load_tracking state.server_load_metrics = 0 def create_server_socket(addr: tuple[str, int]) -> socket.socket: family = socket.AF_INET if is_valid_ipv6_address(addr[0]): family = socket.AF_INET6 sock = socket.socket(family=family, type=socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1) sock.bind(addr) return sock async def run_server(args, **uvicorn_kwargs) -> None: logger.info("vLLM API server version %s", VLLM_VERSION) logger.info("args: %s", args) if args.tool_parser_plugin and len(args.tool_parser_plugin) > 3: ToolParserManager.import_tool_parser(args.tool_parser_plugin) valid_tool_parses = ToolParserManager.tool_parsers.keys() if args.enable_auto_tool_choice \ and args.tool_call_parser not in valid_tool_parses: raise KeyError(f"invalid tool call parser: {args.tool_call_parser} " f"(chose from {{ {','.join(valid_tool_parses)} }})") valid_reasoning_parses = ReasoningParserManager.reasoning_parsers.keys() if args.enable_reasoning \ and args.reasoning_parser not in valid_reasoning_parses: raise KeyError( f"invalid reasoning parser: {args.reasoning_parser} " f"(chose from {{ {','.join(valid_reasoning_parses)} }})") # workaround to make sure that we bind the port before the engine is set up. # This avoids race conditions with ray. # see https://github.com/vllm-project/vllm/issues/8204 sock_addr = (args.host or "", args.port) sock = create_server_socket(sock_addr) # workaround to avoid footguns where uvicorn drops requests with too # many concurrent requests active set_ulimit() def signal_handler(*_) -> None: # Interrupt server on sigterm while initializing raise KeyboardInterrupt("terminated") signal.signal(signal.SIGTERM, signal_handler) async with build_async_engine_client(args) as engine_client: app = build_app(args) model_config = await engine_client.get_model_config() await init_app_state(engine_client, model_config, app.state, args) def _listen_addr(a: str) -> str: if is_valid_ipv6_address(a): return '[' + a + ']' return a or "0.0.0.0" is_ssl = args.ssl_keyfile and args.ssl_certfile logger.info("Starting vLLM API server on http%s://%s:%d", "s" if is_ssl else "", _listen_addr(sock_addr[0]), sock_addr[1]) shutdown_task = await serve_http( app, sock=sock, enable_ssl_refresh=args.enable_ssl_refresh, host=args.host, port=args.port, log_level=args.uvicorn_log_level, # NOTE: When the 'disable_uvicorn_access_log' value is True, # no access log will be output. access_log=not args.disable_uvicorn_access_log, timeout_keep_alive=TIMEOUT_KEEP_ALIVE, ssl_keyfile=args.ssl_keyfile, ssl_certfile=args.ssl_certfile, ssl_ca_certs=args.ssl_ca_certs, ssl_cert_reqs=args.ssl_cert_reqs, **uvicorn_kwargs, ) # NB: Await server shutdown only after the backend context is exited await shutdown_task sock.close() if __name__ == "__main__": # NOTE(simon): # This section should be in sync with vllm/entrypoints/cli/main.py for CLI # entrypoints. parser = FlexibleArgumentParser( description="vLLM OpenAI-Compatible RESTful API server.") parser = make_arg_parser(parser) args = parser.parse_args() validate_parsed_serve_args(args) uvloop.run(run_server(args))