# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # ruff: noqa: E501 import json import pytest from vllm.entrypoints.openai.protocol import FunctionCall, ToolCall from vllm.entrypoints.openai.tool_parsers.kimi_k2_tool_parser import KimiK2ToolParser from vllm.transformers_utils.tokenizer import get_tokenizer pytestmark = pytest.mark.cpu_test # Use a common model that is likely to be available MODEL = "moonshotai/Kimi-K2-Instruct" @pytest.fixture(scope="module") def kimi_k2_tokenizer(): return get_tokenizer(tokenizer_name=MODEL, trust_remote_code=True) @pytest.fixture def kimi_k2_tool_parser(kimi_k2_tokenizer): return KimiK2ToolParser(kimi_k2_tokenizer) def assert_tool_calls( actual_tool_calls: list[ToolCall], expected_tool_calls: list[ToolCall] ): assert len(actual_tool_calls) == len(expected_tool_calls) for actual_tool_call, expected_tool_call in zip( actual_tool_calls, expected_tool_calls ): assert actual_tool_call.type == "function" assert actual_tool_call.function == expected_tool_call.function # assert tool call id format: should contain function name and numeric index # Format can be either "functions.func_name:0" or "func_name:0" assert actual_tool_call.id.split(":")[-1].isdigit() assert ( actual_tool_call.id.split(":")[0].split(".")[-1] == expected_tool_call.function.name ) def test_extract_tool_calls_no_tools(kimi_k2_tool_parser): model_output = "This is a test" extracted_tool_calls = kimi_k2_tool_parser.extract_tool_calls( model_output, request=None ) # type: ignore[arg-type] assert not extracted_tool_calls.tools_called assert extracted_tool_calls.tool_calls == [] assert extracted_tool_calls.content == model_output @pytest.mark.parametrize( ids=[ "tool_call_with_content_before", "multi_tool_call_with_content_before", "concatenated_tool_calls_bug_fix", "three_concatenated_tool_calls", "mixed_spacing_tool_calls", "angle_brackets_in_json", "newlines_in_json", ], argnames=["model_output", "expected_tool_calls", "expected_content"], argvalues=[ ( """I'll help you check the weather. <|tool_calls_section_begin|> <|tool_call_begin|> functions.get_weather:0 <|tool_call_argument_begin|> {"city": "Beijing"} <|tool_call_end|> <|tool_calls_section_end|>""", [ ToolCall( id="functions.get_weather:0", function=FunctionCall( name="get_weather", arguments=json.dumps( { "city": "Beijing", }, ), ), type="function", ) ], "I'll help you check the weather. ", ), ( """I'll help you check the weather. <|tool_calls_section_begin|> <|tool_call_begin|> functions.get_weather:0 <|tool_call_argument_begin|> {"city": "Beijing"} <|tool_call_end|> <|tool_call_begin|> functions.get_weather:1 <|tool_call_argument_begin|> {"city": "Shanghai"} <|tool_call_end|> <|tool_calls_section_end|>""", [ ToolCall( id="functions.get_weather:0", function=FunctionCall( name="get_weather", arguments=json.dumps( { "city": "Beijing", }, ), ), type="function", ), ToolCall( id="functions.get_weather:1", function=FunctionCall( name="get_weather", arguments=json.dumps( { "city": "Shanghai", }, ), ), type="function", ), ], "I'll help you check the weather. ", ), ( """I'll get the weather and news for LA today. First, let me get the weather using Los Angeles coordinates, and then get the latest news. <|tool_calls_section_begin|><|tool_call_begin|>functions.get_weather:0<|tool_call_argument_begin|>{"latitude": 34.0522, "longitude": -118.2437}<|tool_call_end|><|tool_call_begin|>functions.get_news:1<|tool_call_argument_begin|>{"content": "Los Angeles today"}<|tool_call_end|><|tool_calls_section_end|>""", [ ToolCall( id="functions.get_weather:0", function=FunctionCall( name="get_weather", arguments=json.dumps( {"latitude": 34.0522, "longitude": -118.2437} ), ), type="function", ), ToolCall( id="functions.get_news:1", function=FunctionCall( name="get_news", arguments=json.dumps({"content": "Los Angeles today"}), ), type="function", ), ], "I'll get the weather and news for LA today. First, let me get the weather using Los Angeles coordinates, and then get the latest news. ", ), ( """I'll help you with multiple tasks. <|tool_calls_section_begin|><|tool_call_begin|>functions.get_weather:0<|tool_call_argument_begin|>{"city": "New York"}<|tool_call_end|><|tool_call_begin|>functions.get_news:1<|tool_call_argument_begin|>{"topic": "technology"}<|tool_call_end|><|tool_call_begin|>functions.send_email:2<|tool_call_argument_begin|>{"to": "user@example.com", "subject": "Daily Update"}<|tool_call_end|><|tool_calls_section_end|>""", [ ToolCall( id="functions.get_weather:0", function=FunctionCall( name="get_weather", arguments=json.dumps({"city": "New York"}), ), type="function", ), ToolCall( id="functions.get_news:1", function=FunctionCall( name="get_news", arguments=json.dumps({"topic": "technology"}), ), type="function", ), ToolCall( id="functions.send_email:2", function=FunctionCall( name="send_email", arguments=json.dumps( {"to": "user@example.com", "subject": "Daily Update"} ), ), type="function", ), ], "I'll help you with multiple tasks. ", ), ( """Mixed spacing test. <|tool_calls_section_begin|> <|tool_call_begin|> functions.test:0 <|tool_call_argument_begin|> {} <|tool_call_end|><|tool_call_begin|>functions.test2:1<|tool_call_argument_begin|>{}<|tool_call_end|> <|tool_calls_section_end|>""", [ ToolCall( id="functions.test:0", function=FunctionCall( name="test", arguments=json.dumps({}), ), type="function", ), ToolCall( id="functions.test2:1", function=FunctionCall( name="test2", arguments=json.dumps({}), ), type="function", ), ], "Mixed spacing test. ", ), ( """I need to process HTML content. <|tool_calls_section_begin|><|tool_call_begin|>functions.process_html:0<|tool_call_argument_begin|>{"html": "
content
", "text": "normal text"}<|tool_call_end|><|tool_calls_section_end|>""", [ ToolCall( id="functions.process_html:0", function=FunctionCall( name="process_html", arguments=json.dumps( {"html": "
content
", "text": "normal text"} ), ), type="function", ) ], "I need to process HTML content. ", ), ( """I need to process formatted JSON. <|tool_calls_section_begin|><|tool_call_begin|>functions.process_data:0<|tool_call_argument_begin|>{ "name": "test", "value": 123, "nested": { "key": "value" } }<|tool_call_end|><|tool_calls_section_end|>""", [ ToolCall( id="functions.process_data:0", function=FunctionCall( name="process_data", arguments=json.dumps( {"name": "test", "value": 123, "nested": {"key": "value"}}, indent=2, ), ), type="function", ) ], "I need to process formatted JSON. ", ), ], ) def test_extract_tool_calls( kimi_k2_tool_parser, model_output, expected_tool_calls, expected_content ): extracted_tool_calls = kimi_k2_tool_parser.extract_tool_calls( model_output, request=None ) # type: ignore[arg-type] assert extracted_tool_calls.tools_called assert_tool_calls(extracted_tool_calls.tool_calls, expected_tool_calls) assert extracted_tool_calls.content == expected_content def test_extract_tool_calls_invalid_json(kimi_k2_tool_parser): """we'll return every funcall result""" model_output = """I'll help you check the weather. <|tool_calls_section_begin|> <|tool_call_begin|> functions.invalid_get_weather:0 <|tool_call_argument_begin|> {"city": "Beijing" <|tool_call_end|> <|tool_call_begin|> functions.valid_get_weather:1 <|tool_call_argument_begin|> {"city": "Shanghai"} <|tool_call_end|> <|tool_calls_section_end|>""" extracted_tool_calls = kimi_k2_tool_parser.extract_tool_calls( model_output, request=None ) # type: ignore[arg-type] assert extracted_tool_calls.tools_called # Should extract only the valid JSON tool calls assert len(extracted_tool_calls.tool_calls) == 2 assert extracted_tool_calls.tool_calls[0].function.name == "invalid_get_weather" assert extracted_tool_calls.tool_calls[1].function.name == "valid_get_weather" def test_extract_tool_calls_invalid_funcall(kimi_k2_tool_parser): """we'll return every funcall result""" model_output = """I'll help you check the weather. <|tool_calls_section_begin|> <|tool_call_begin|> functions.invalid_get_weather.0 <|tool_call_argument_begin|> {"city": "Beijing"} <|tool_call_end|> <|tool_call_begin|> functions.valid_get_weather:1 <|tool_call_argument_begin|> {"city": "Shanghai"} <|tool_call_end|> <|tool_calls_section_end|>""" extracted_tool_calls = kimi_k2_tool_parser.extract_tool_calls( model_output, request=None ) # type: ignore[arg-type] assert extracted_tool_calls.tools_called # Should extract only the valid JSON tool calls assert len(extracted_tool_calls.tool_calls) == 1 assert extracted_tool_calls.tool_calls[0].function.name == "valid_get_weather" def test_streaming_basic_functionality(kimi_k2_tool_parser): """Test basic streaming functionality.""" # Reset streaming state kimi_k2_tool_parser.current_tool_name_sent = False kimi_k2_tool_parser.prev_tool_call_arr = [] kimi_k2_tool_parser.current_tool_id = -1 kimi_k2_tool_parser.streamed_args_for_tool = [] # Test with a simple tool call current_text = """ check the weather. <|tool_calls_section_begin|> <|tool_call_begin|> functions.get_weather:0 <|tool_call_argument_begin|> {"city": "Beijing"} <|tool_call_end|> <|tool_calls_section_end|>""" # First call should handle the initial setup result = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="I'll help you", current_text=current_text, delta_text="<|tool_calls_section_end|>", previous_token_ids=[], current_token_ids=[], delta_token_ids=[], request=None, ) # The result might be None or contain tool call information # This depends on the internal state management if result is not None and hasattr(result, "tool_calls") and result.tool_calls: assert len(result.tool_calls) >= 0 def test_streaming_no_tool_calls(kimi_k2_tool_parser): """Test streaming when there are no tool calls.""" current_text = "This is just regular text without any tool calls." result = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="This is just regular text", current_text=current_text, delta_text=" without any tool calls.", previous_token_ids=[], current_token_ids=[], delta_token_ids=[], request=None, ) # Should return the delta text as content assert result is not None assert hasattr(result, "content") assert result.content == " without any tool calls." def test_token_leak_between_section_and_tool_begin(kimi_k2_tool_parser): """ Test that text between <|tool_calls_section_begin|> and <|tool_call_begin|> is suppressed and does not leak into reasoning_delta. This is the main vulnerability being fixed. """ kimi_k2_tool_parser.reset_streaming_state() # Get token IDs for the markers section_begin_token_id = kimi_k2_tool_parser.vocab.get( "<|tool_calls_section_begin|>" ) tool_call_begin_token_id = kimi_k2_tool_parser.vocab.get("<|tool_call_begin|>") # Simulate streaming sequence: # Delta 1: "I'll help you with that. " result1 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="", current_text="I'll help you with that. ", delta_text="I'll help you with that. ", previous_token_ids=[], current_token_ids=[1, 2, 3], # Regular tokens delta_token_ids=[1, 2, 3], request=None, ) assert result1 is not None assert result1.content == "I'll help you with that. " # Delta 2: "<|tool_calls_section_begin|>" prev_ids = [1, 2, 3] curr_ids = prev_ids + [section_begin_token_id] result2 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="I'll help you with that. ", current_text="I'll help you with that. <|tool_calls_section_begin|>", delta_text="<|tool_calls_section_begin|>", previous_token_ids=prev_ids, current_token_ids=curr_ids, delta_token_ids=[section_begin_token_id], request=None, ) # Section marker should be stripped and suppressed assert result2 is None or (result2.content is None or result2.content == "") # Delta 3: " spurious text or tokens " (THE LEAK SCENARIO) prev_ids = curr_ids curr_ids = curr_ids + [4, 5] result3 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="I'll help you with that. <|tool_calls_section_begin|>", current_text="I'll help you with that. <|tool_calls_section_begin|> spurious text ", delta_text=" spurious text ", previous_token_ids=prev_ids, current_token_ids=curr_ids, delta_token_ids=[4, 5], request=None, ) # CRITICAL: This text should be suppressed, NOT returned as reasoning_delta assert result3 is None or (result3.content is None or result3.content == "") # Delta 4: "<|tool_call_begin|>..." prev_ids = curr_ids curr_ids = curr_ids + [tool_call_begin_token_id] _result4 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="I'll help you with that. <|tool_calls_section_begin|> spurious text ", current_text="I'll help you with that. <|tool_calls_section_begin|> spurious text <|tool_call_begin|>", delta_text="<|tool_call_begin|>", previous_token_ids=prev_ids, current_token_ids=curr_ids, delta_token_ids=[tool_call_begin_token_id], request=None, ) # Now we're in tool call mode, result depends on internal state # The key is that the spurious text from Delta 3 was not leaked def test_split_markers_across_deltas(kimi_k2_tool_parser): """ Test that markers split across delta chunks are correctly detected via the rolling buffer mechanism. """ kimi_k2_tool_parser.reset_streaming_state() section_begin_token_id = kimi_k2_tool_parser.vocab.get( "<|tool_calls_section_begin|>" ) # Delta 1: "...reasoning<|tool_calls_sec" _result1 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="Some reasoning", current_text="Some reasoning<|tool_calls_sec", delta_text="<|tool_calls_sec", previous_token_ids=[1, 2], current_token_ids=[1, 2, 3], # Partial token delta_token_ids=[3], request=None, ) # Partial token not recognized yet, might be buffered # Should return as content or None (depends on implementation) # Delta 2: "tion_begin|> " (completes the marker) _result2 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="Some reasoning<|tool_calls_sec", current_text="Some reasoning<|tool_calls_section_begin|> ", delta_text="tion_begin|> ", previous_token_ids=[1, 2, 3], current_token_ids=[1, 2, section_begin_token_id, 4], delta_token_ids=[section_begin_token_id, 4], request=None, ) # Now the complete marker should be detected via buffer # The parser should enter tool section mode assert kimi_k2_tool_parser.in_tool_section is True def test_marker_variants(kimi_k2_tool_parser): """Test that both singular and plural marker variants are recognized.""" kimi_k2_tool_parser.reset_streaming_state() # Test singular variant: <|tool_call_section_begin|> (note: singular "call") singular_token_id = kimi_k2_tool_parser.vocab.get("<|tool_call_section_begin|>") if singular_token_id is not None: # Only test if tokenizer supports it _result = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="Reasoning ", current_text="Reasoning <|tool_call_section_begin|>", delta_text="<|tool_call_section_begin|>", previous_token_ids=[1, 2], current_token_ids=[1, 2, singular_token_id], delta_token_ids=[singular_token_id], request=None, ) # Should enter tool section mode with singular variant too assert kimi_k2_tool_parser.in_tool_section is True def test_reentry_to_reasoning_after_tool_section(kimi_k2_tool_parser): """ Test that after exiting a tool section with <|tool_calls_section_end|>, subsequent text is correctly returned as reasoning content. """ kimi_k2_tool_parser.reset_streaming_state() section_begin_id = kimi_k2_tool_parser.vocab.get("<|tool_calls_section_begin|>") section_end_id = kimi_k2_tool_parser.vocab.get("<|tool_calls_section_end|>") # Enter tool section _result1 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="", current_text="<|tool_calls_section_begin|>", delta_text="<|tool_calls_section_begin|>", previous_token_ids=[], current_token_ids=[section_begin_id], delta_token_ids=[section_begin_id], request=None, ) assert kimi_k2_tool_parser.in_tool_section is True # Exit tool section _result2 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="<|tool_calls_section_begin|>", current_text="<|tool_calls_section_begin|><|tool_calls_section_end|>", delta_text="<|tool_calls_section_end|>", previous_token_ids=[section_begin_id], current_token_ids=[section_begin_id, section_end_id], delta_token_ids=[section_end_id], request=None, ) assert kimi_k2_tool_parser.in_tool_section is False # Subsequent reasoning text should be returned normally result3 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="<|tool_calls_section_begin|><|tool_calls_section_end|>", current_text="<|tool_calls_section_begin|><|tool_calls_section_end|> More reasoning", delta_text=" More reasoning", previous_token_ids=[section_begin_id, section_end_id], current_token_ids=[section_begin_id, section_end_id, 10, 11], delta_token_ids=[10, 11], request=None, ) assert result3 is not None assert result3.content == " More reasoning" def test_empty_tool_section(kimi_k2_tool_parser): """Test an empty tool section (begin immediately followed by end).""" kimi_k2_tool_parser.reset_streaming_state() section_begin_id = kimi_k2_tool_parser.vocab.get("<|tool_calls_section_begin|>") section_end_id = kimi_k2_tool_parser.vocab.get("<|tool_calls_section_end|>") # Section begin _result1 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="Reasoning ", current_text="Reasoning <|tool_calls_section_begin|>", delta_text="<|tool_calls_section_begin|>", previous_token_ids=[1], current_token_ids=[1, section_begin_id], delta_token_ids=[section_begin_id], request=None, ) # Immediate section end _result2 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="Reasoning <|tool_calls_section_begin|>", current_text="Reasoning <|tool_calls_section_begin|><|tool_calls_section_end|>", delta_text="<|tool_calls_section_end|>", previous_token_ids=[1, section_begin_id], current_token_ids=[1, section_begin_id, section_end_id], delta_token_ids=[section_end_id], request=None, ) # Should exit cleanly without errors assert kimi_k2_tool_parser.in_tool_section is False def test_malformed_tool_section_recovery(kimi_k2_tool_parser): """ Test that the parser recovers from a malformed tool section that never closes properly. """ kimi_k2_tool_parser.reset_streaming_state() section_begin_id = kimi_k2_tool_parser.vocab.get("<|tool_calls_section_begin|>") # Enter tool section _result1 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="", current_text="<|tool_calls_section_begin|>", delta_text="<|tool_calls_section_begin|>", previous_token_ids=[], current_token_ids=[section_begin_id], delta_token_ids=[section_begin_id], request=None, ) assert kimi_k2_tool_parser.in_tool_section is True # Simulate a lot of text without proper tool calls or section end # This should trigger the error recovery mechanism large_text = "x" * 10000 # Exceeds max_section_chars result2 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="<|tool_calls_section_begin|>", current_text="<|tool_calls_section_begin|>" + large_text, delta_text=large_text, previous_token_ids=[section_begin_id], current_token_ids=[section_begin_id] + list(range(100, 100 + len(large_text))), delta_token_ids=list(range(100, 100 + len(large_text))), request=None, ) # Parser should have force-exited the tool section assert kimi_k2_tool_parser.in_tool_section is False # And returned the content as reasoning assert result2 is not None assert result2.content == large_text def test_state_reset(kimi_k2_tool_parser): """Test that reset_streaming_state() properly clears all state.""" # Put parser in a complex state kimi_k2_tool_parser.in_tool_section = True kimi_k2_tool_parser.token_buffer = "some buffer" kimi_k2_tool_parser.current_tool_id = 5 kimi_k2_tool_parser.prev_tool_call_arr = [{"id": "test"}] kimi_k2_tool_parser.section_char_count = 1000 # Reset kimi_k2_tool_parser.reset_streaming_state() # Verify all state is cleared assert kimi_k2_tool_parser.in_tool_section is False assert kimi_k2_tool_parser.token_buffer == "" assert kimi_k2_tool_parser.current_tool_id == -1 assert kimi_k2_tool_parser.prev_tool_call_arr == [] assert kimi_k2_tool_parser.section_char_count == 0 assert kimi_k2_tool_parser.current_tool_name_sent is False assert kimi_k2_tool_parser.streamed_args_for_tool == [] def test_section_begin_noise_tool_begin_same_chunk(kimi_k2_tool_parser): """ Test that begin→noise→tool_begin within the SAME chunk suppresses the noise text correctly (not just across chunks). """ kimi_k2_tool_parser.reset_streaming_state() section_begin_id = kimi_k2_tool_parser.vocab.get("<|tool_calls_section_begin|>") tool_call_begin_id = kimi_k2_tool_parser.vocab.get("<|tool_call_begin|>") # Single delta containing: section_begin + spurious text + tool_call_begin combined_text = "<|tool_calls_section_begin|> noise text <|tool_call_begin|>" result = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="Reasoning ", current_text="Reasoning " + combined_text, delta_text=combined_text, previous_token_ids=[1, 2], current_token_ids=[1, 2, section_begin_id, 3, 4, tool_call_begin_id], delta_token_ids=[section_begin_id, 3, 4, tool_call_begin_id], request=None, ) # The noise text should NOT leak into content # Result should either be None/empty or start tool call parsing if result is not None and result.content is not None: # If content is returned, it should not contain the noise assert "noise text" not in result.content assert result.content == "" or result.content.strip() == "" def test_stream_ends_without_section_end_marker(kimi_k2_tool_parser): """ Test that if the stream ends (EOF) without a proper section end marker, the parser doesn't leak text, doesn't crash, and resets state cleanly. """ kimi_k2_tool_parser.reset_streaming_state() section_begin_id = kimi_k2_tool_parser.vocab.get("<|tool_calls_section_begin|>") # Enter tool section _result1 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="", current_text="<|tool_calls_section_begin|>", delta_text="<|tool_calls_section_begin|>", previous_token_ids=[], current_token_ids=[section_begin_id], delta_token_ids=[section_begin_id], request=None, ) assert kimi_k2_tool_parser.in_tool_section is True # Some content in tool section result2 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="<|tool_calls_section_begin|>", current_text="<|tool_calls_section_begin|> partial content", delta_text=" partial content", previous_token_ids=[section_begin_id], current_token_ids=[section_begin_id, 10, 11], delta_token_ids=[10, 11], request=None, ) # Content should be suppressed assert result2.content == "" or result2.content is None # Stream ends (EOF) - no more deltas, no section_end marker # Simulate this by manually checking state and resetting # (In real usage, the request handler would call reset_streaming_state) assert kimi_k2_tool_parser.in_tool_section is True # Still in section # Reset state (as would happen between requests) kimi_k2_tool_parser.reset_streaming_state() # Verify clean slate assert kimi_k2_tool_parser.in_tool_section is False assert kimi_k2_tool_parser.token_buffer == "" # Next request should work normally result3 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="", current_text="New reasoning", delta_text="New reasoning", previous_token_ids=[], current_token_ids=[20, 21], delta_token_ids=[20, 21], request=None, ) assert result3 is not None assert result3.content == "New reasoning" def test_same_chunk_begin_and_end_markers(kimi_k2_tool_parser): """ CRITICAL TEST: Verify that when both section_begin and section_end markers appear in the SAME chunk, the parser correctly: 1. Enters the tool section 2. Immediately exits the tool section 3. Does NOT get stuck in in_tool_section=True state This tests the bug fix where elif was changed to if to handle both state transitions in a single delta. """ kimi_k2_tool_parser.reset_streaming_state() section_begin_id = kimi_k2_tool_parser.vocab.get("<|tool_calls_section_begin|>") section_end_id = kimi_k2_tool_parser.vocab.get("<|tool_calls_section_end|>") # Single chunk with both markers (e.g., empty tool section) combined_delta = "<|tool_calls_section_begin|><|tool_calls_section_end|>" result = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="Some reasoning ", current_text="Some reasoning " + combined_delta, delta_text=combined_delta, previous_token_ids=[1, 2], current_token_ids=[1, 2, section_begin_id, section_end_id], delta_token_ids=[section_begin_id, section_end_id], request=None, ) # CRITICAL: Parser should NOT be stuck in tool section assert kimi_k2_tool_parser.in_tool_section is False, ( "Parser stuck in tool section after processing both begin/end in same chunk. " "This indicates the elif bug was not fixed." ) # Result should be empty or contain only stripped content assert result is not None assert result.content == "" or result.content is None # Verify subsequent content streams correctly (not suppressed) result2 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="Some reasoning " + combined_delta, current_text="Some reasoning " + combined_delta + " More reasoning", delta_text=" More reasoning", previous_token_ids=[1, 2, section_begin_id, section_end_id], current_token_ids=[1, 2, section_begin_id, section_end_id, 10, 11], delta_token_ids=[10, 11], request=None, ) # This content should NOT be suppressed (we're out of tool section) assert result2 is not None assert result2.content == " More reasoning" def test_same_chunk_begin_content_end_markers(kimi_k2_tool_parser): """ Test the same-chunk scenario with actual content between markers. Example: <|tool_calls_section_begin|> text <|tool_calls_section_end|> all arriving in one delta. The key is that the state machine correctly transitions in and out within the same chunk. """ kimi_k2_tool_parser.reset_streaming_state() section_begin_id = kimi_k2_tool_parser.vocab.get("<|tool_calls_section_begin|>") section_end_id = kimi_k2_tool_parser.vocab.get("<|tool_calls_section_end|>") # Chunk with begin, some whitespace/noise, and end all together # This simulates a tool section that opens and closes in the same chunk combined_delta = "<|tool_calls_section_begin|> <|tool_calls_section_end|>" _result = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="Reasoning ", current_text="Reasoning " + combined_delta, delta_text=combined_delta, previous_token_ids=[1], current_token_ids=[1, section_begin_id, 100, section_end_id], delta_token_ids=[section_begin_id, 100, section_end_id], request=None, ) # Parser should exit cleanly (not stuck in tool section) assert kimi_k2_tool_parser.in_tool_section is False # Verify the fix: next content should stream normally, not be suppressed result2 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="Reasoning " + combined_delta, current_text="Reasoning " + combined_delta + " Done", delta_text=" Done", previous_token_ids=[1, section_begin_id, 100, section_end_id], current_token_ids=[1, section_begin_id, 100, section_end_id, 200], delta_token_ids=[200], request=None, ) # Content after section should be returned (not suppressed) assert result2 is not None assert result2.content == " Done" def test_tool_call_end_and_section_end_same_chunk(kimi_k2_tool_parser): """ CRITICAL TEST (P1): Verify that when both <|tool_call_end|> and <|tool_calls_section_end|> appear in the SAME chunk, the parser: 1. Processes the tool_call_end first (emits final arguments) 2. THEN exits the section 3. Does NOT drop the final tool call update 4. Does NOT leak special tokens into reasoning This tests the deferred section exit fix. """ kimi_k2_tool_parser.reset_streaming_state() section_begin_id = kimi_k2_tool_parser.vocab.get("<|tool_calls_section_begin|>") section_end_id = kimi_k2_tool_parser.vocab.get("<|tool_calls_section_end|>") tool_begin_id = kimi_k2_tool_parser.vocab.get("<|tool_call_begin|>") tool_end_id = kimi_k2_tool_parser.vocab.get("<|tool_call_end|>") # Simulate a streaming sequence for a SHORT tool call (all in one chunk): # 1. Reasoning text result1 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="", current_text="Let me help. ", delta_text="Let me help. ", previous_token_ids=[], current_token_ids=[1, 2], delta_token_ids=[1, 2], request=None, ) assert result1 is not None assert result1.content == "Let me help. " # 2. Section begin _result2 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text="Let me help. ", current_text="Let me help. <|tool_calls_section_begin|>", delta_text="<|tool_calls_section_begin|>", previous_token_ids=[1, 2], current_token_ids=[1, 2, section_begin_id], delta_token_ids=[section_begin_id], request=None, ) assert kimi_k2_tool_parser.in_tool_section is True # 3. Tool call begin + full content + tool_end + section_end ALL IN ONE CHUNK # This is the critical scenario for short tool calls combined = ( '<|tool_call_begin|>get_weather:0 <|tool_call_argument_begin|> {"city": "Paris"} ' "<|tool_call_end|><|tool_calls_section_end|>" ) # Build up the previous text gradually to simulate realistic streaming prev_text = "Let me help. <|tool_calls_section_begin|>" curr_text = prev_text + combined result3 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text=prev_text, current_text=curr_text, delta_text=combined, previous_token_ids=[1, 2, section_begin_id], current_token_ids=[ 1, 2, section_begin_id, tool_begin_id, 10, 11, 12, tool_end_id, section_end_id, ], delta_token_ids=[tool_begin_id, 10, 11, 12, tool_end_id, section_end_id], request=None, ) # CRITICAL: Parser should have exited section AFTER processing tool assert kimi_k2_tool_parser.in_tool_section is False # Tool call should have been emitted (not dropped) # The result might be the tool name or None depending on state, but # importantly, it shouldn't be returning the literal tokens as content if result3 is not None and result3.content is not None: # Verify no special tokens leaked into content assert "<|tool_call_end|>" not in result3.content assert "<|tool_calls_section_end|>" not in result3.content # 4. Verify subsequent content streams normally result4 = kimi_k2_tool_parser.extract_tool_calls_streaming( previous_text=curr_text, current_text=curr_text + " Done", delta_text=" Done", previous_token_ids=[ 1, 2, section_begin_id, tool_begin_id, 10, 11, 12, tool_end_id, section_end_id, ], current_token_ids=[ 1, 2, section_begin_id, tool_begin_id, 10, 11, 12, tool_end_id, section_end_id, 20, ], delta_token_ids=[20], request=None, ) # Content after tool section should stream normally assert result4 is not None assert result4.content == " Done"