# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import base64 import os from tempfile import NamedTemporaryFile from typing import Any, cast import cv2 import pytest from transformers import AutoTokenizer, PreTrainedTokenizerBase from vllm.benchmarks.datasets import RandomMultiModalDataset, SampleRequest @pytest.fixture(scope="session") def hf_tokenizer() -> PreTrainedTokenizerBase: """Use a small, commonly available tokenizer.""" return AutoTokenizer.from_pretrained("gpt2") @pytest.fixture def video_dataset() -> RandomMultiModalDataset: """Create a RandomMultiModalDataset instance for testing.""" return RandomMultiModalDataset(random_seed=42) @pytest.mark.benchmark def test_generate_synthetic_video_different_seeds(): """Test that different seeds produce different videos.""" dataset1 = RandomMultiModalDataset(random_seed=123) dataset2 = RandomMultiModalDataset(random_seed=456) width, height, num_frames = 64, 48, 8 video1 = dataset1.generate_synthetic_video(width, height, num_frames) video2 = dataset2.generate_synthetic_video(width, height, num_frames) # Videos should be different due to different seeds assert video1["bytes"] != video2["bytes"] @pytest.mark.benchmark def test_map_config_to_modality(video_dataset: RandomMultiModalDataset): """Test modality mapping for different configurations.""" # Test image configuration (num_frames = 1) assert video_dataset.map_config_to_modality((256, 256, 1)) == "image" assert video_dataset.map_config_to_modality((720, 1280, 1)) == "image" # Test video configurations (num_frames > 1) assert video_dataset.map_config_to_modality((256, 256, 8)) == "video" assert video_dataset.map_config_to_modality((720, 1280, 16)) == "video" assert video_dataset.map_config_to_modality((64, 64, 32)) == "video" # Test invalid configurations with pytest.raises(ValueError, match="Invalid multimodal item configuration"): video_dataset.map_config_to_modality((256, 256, 0)) with pytest.raises(ValueError, match="Invalid multimodal item configuration"): video_dataset.map_config_to_modality((256, 256, -1)) @pytest.mark.benchmark def test_generate_mm_item_video(video_dataset: RandomMultiModalDataset): """Test generating multimodal items for video configurations.""" # Test video item generation video_config = (64, 48, 8) # height, width, num_frames result = video_dataset.generate_mm_item(video_config) # Check the result structure matches OpenAI API format assert isinstance(result, dict) assert result["type"] == "video_url" assert "video_url" in result assert "url" in result["video_url"] # Check that the URL is a data URL with base64 encoded video url = result["video_url"]["url"] assert url.startswith("data:video/mp4;base64,") # Decode and verify the video content base64_data = url.split(",")[1] video_bytes = base64.b64decode(base64_data) assert len(video_bytes) > 0 # Verify the video can be decoded with NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file: temp_path = temp_file.name temp_file.write(video_bytes) try: cap = cv2.VideoCapture(temp_path) assert cap.isOpened() frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) assert frame_count == 8 assert frame_width == 48 assert frame_height == 64 cap.release() finally: if os.path.exists(temp_path): os.unlink(temp_path) @pytest.mark.benchmark def test_generate_mm_item_image(video_dataset: RandomMultiModalDataset): """Test generating multimodal items for image configurations.""" # Test image item generation image_config = (64, 48, 1) # height, width, num_frames=1 result = video_dataset.generate_mm_item(image_config) # Check the result structure matches OpenAI API format assert isinstance(result, dict) assert result["type"] == "image_url" assert "image_url" in result assert "url" in result["image_url"] # Check that the URL is a data URL with base64 encoded image url = result["image_url"]["url"] assert url.startswith("data:image/jpeg;base64,") @pytest.mark.benchmark def test_generate_mm_item_invalid_config(video_dataset: RandomMultiModalDataset): """Test error handling for invalid configurations.""" with pytest.raises(ValueError, match="Invalid multimodal item configuration"): video_dataset.generate_mm_item((256, 256, 0)) @pytest.mark.benchmark def test_sample_with_video_buckets( video_dataset: RandomMultiModalDataset, hf_tokenizer: PreTrainedTokenizerBase ): """Test sampling with video bucket configurations.""" # Configure bucket with video probability > 0 bucket_config = { (64, 64, 1): 0.3, # Images (64, 64, 8): 0.7, # Videos } limit_mm_per_prompt = {"image": 5, "video": 3} samples = video_dataset.sample( tokenizer=hf_tokenizer, num_requests=5, base_items_per_request=2, num_mm_items_range_ratio=0.0, limit_mm_per_prompt=limit_mm_per_prompt, bucket_config=bucket_config, input_len=20, output_len=5, ) assert len(samples) == 5 # Check that samples contain both images and videos video_count = 0 image_count = 0 for sample in samples: assert isinstance(sample, SampleRequest) assert sample.multi_modal_data is not None assert isinstance(sample.multi_modal_data, list) mm_data = cast(list[dict[str, Any]], sample.multi_modal_data) assert len(mm_data) == 2 # base_items_per_request for item in mm_data: if item["type"] == "video_url": video_count += 1 # Verify video URL format url = item["video_url"]["url"] assert url.startswith("data:video/mp4;base64,") elif item["type"] == "image_url": image_count += 1 # Verify image URL format url = item["image_url"]["url"] assert url.startswith("data:image/jpeg;base64,") # Should have some videos due to 0.7 probability assert video_count > 0 assert image_count > 0 @pytest.mark.benchmark def test_sample_video_only_buckets( video_dataset: RandomMultiModalDataset, hf_tokenizer: PreTrainedTokenizerBase ): """Test sampling with only video buckets.""" bucket_config = { (64, 64, 8): 1.0, # Only videos } limit_mm_per_prompt = {"image": 0, "video": 2} samples = video_dataset.sample( tokenizer=hf_tokenizer, num_requests=3, base_items_per_request=1, num_mm_items_range_ratio=0.0, limit_mm_per_prompt=limit_mm_per_prompt, bucket_config=bucket_config, input_len=20, output_len=5, ) assert len(samples) == 3 for sample in samples: assert isinstance(sample, SampleRequest) assert sample.multi_modal_data is not None assert isinstance(sample.multi_modal_data, list) mm_data = cast(list[dict[str, Any]], sample.multi_modal_data) assert len(mm_data) == 1 item = mm_data[0] assert item["type"] == "video_url" url = item["video_url"]["url"] assert url.startswith("data:video/mp4;base64,") @pytest.mark.benchmark def test_sample_respects_video_limits( video_dataset: RandomMultiModalDataset, hf_tokenizer: PreTrainedTokenizerBase ): """Test that sampling respects video limits per prompt.""" bucket_config = { (64, 64, 8): 1.0, # Only videos } # Set very low video limit limit_mm_per_prompt = {"image": 0, "video": 1} samples = video_dataset.sample( tokenizer=hf_tokenizer, num_requests=3, base_items_per_request=1, num_mm_items_range_ratio=0.0, limit_mm_per_prompt=limit_mm_per_prompt, bucket_config=bucket_config, input_len=20, output_len=5, ) assert len(samples) == 3 for sample in samples: mm_data = cast(list[dict[str, Any]], sample.multi_modal_data) assert len(mm_data) <= 1 # Should respect video limit @pytest.mark.benchmark def test_sample_mixed_buckets_with_zero_probability( video_dataset: RandomMultiModalDataset, hf_tokenizer: PreTrainedTokenizerBase ): """Test sampling with mixed buckets including zero probability entries.""" bucket_config = { (64, 64, 1): 0.5, # Images (64, 64, 8): 0.5, # Videos (128, 128, 16): 0.0, # Zero probability videos (should be ignored) } limit_mm_per_prompt = {"image": 2, "video": 2} samples = video_dataset.sample( tokenizer=hf_tokenizer, num_requests=4, base_items_per_request=2, num_mm_items_range_ratio=0.0, limit_mm_per_prompt=limit_mm_per_prompt, bucket_config=bucket_config, input_len=20, output_len=5, ) assert len(samples) == 4 # Should only see 64x64 videos, not 128x128 videos for sample in samples: mm_data = cast(list[dict[str, Any]], sample.multi_modal_data) for item in mm_data: if item["type"] == "video_url": # Decode video to verify dimensions url = item["video_url"]["url"] base64_data = url.split(",")[1] video_bytes = base64.b64decode(base64_data) with NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file: # noqa temp_path = temp_file.name temp_file.write(video_bytes) try: cap = cv2.VideoCapture(temp_path) frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) cap.release() # Should be 64x64, not 128x128 assert frame_width == 64 assert frame_height == 64 finally: if os.path.exists(temp_path): os.unlink(temp_path) @pytest.mark.benchmark def test_sample_deterministic_with_videos(hf_tokenizer: PreTrainedTokenizerBase): """Test that sampling with videos is deterministic with same seed.""" dataset1 = RandomMultiModalDataset(random_seed=123) dataset2 = RandomMultiModalDataset(random_seed=123) bucket_config = { (64, 64, 1): 0.3, # Images (64, 64, 8): 0.7, # Videos } limit_mm_per_prompt = {"image": 2, "video": 2} samples1 = dataset1.sample( tokenizer=hf_tokenizer, num_requests=3, base_items_per_request=1, num_mm_items_range_ratio=0.0, limit_mm_per_prompt=limit_mm_per_prompt, bucket_config=bucket_config, input_len=20, output_len=5, ) samples2 = dataset2.sample( tokenizer=hf_tokenizer, num_requests=3, base_items_per_request=1, num_mm_items_range_ratio=0.0, limit_mm_per_prompt=limit_mm_per_prompt, bucket_config=bucket_config, input_len=20, output_len=5, ) assert len(samples1) == len(samples2) # Compare multimodal data for s1, s2 in zip(samples1, samples2): assert s1.multi_modal_data == s2.multi_modal_data @pytest.mark.benchmark def test_sample_different_seeds_produce_different_videos( hf_tokenizer: PreTrainedTokenizerBase, ): """Test that different seeds produce different video content.""" dataset1 = RandomMultiModalDataset(random_seed=123) dataset2 = RandomMultiModalDataset(random_seed=456) bucket_config = { (64, 64, 8): 1.0, # Only videos } limit_mm_per_prompt = {"image": 0, "video": 1} samples1 = dataset1.sample( tokenizer=hf_tokenizer, num_requests=2, base_items_per_request=1, num_mm_items_range_ratio=0.0, limit_mm_per_prompt=limit_mm_per_prompt, bucket_config=bucket_config, input_len=20, output_len=5, ) samples2 = dataset2.sample( tokenizer=hf_tokenizer, num_requests=2, base_items_per_request=1, num_mm_items_range_ratio=0.0, limit_mm_per_prompt=limit_mm_per_prompt, bucket_config=bucket_config, input_len=20, output_len=5, ) # Video content should be different for s1, s2 in zip(samples1, samples2): mm_data1 = cast(list[dict[str, Any]], s1.multi_modal_data) mm_data2 = cast(list[dict[str, Any]], s2.multi_modal_data) assert len(mm_data1) == len(mm_data2) == 1 url1 = mm_data1[0]["video_url"]["url"] url2 = mm_data2[0]["video_url"]["url"] assert url1 != url2 # Different video content