# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """Benchmark the latency of processing a single batch of requests.""" import argparse import dataclasses import json import os import time from typing import Any import numpy as np from tqdm import tqdm from vllm.benchmarks.lib.utils import convert_to_pytorch_benchmark_format, write_to_json from vllm.engine.arg_utils import EngineArgs from vllm.inputs import PromptType from vllm.sampling_params import BeamSearchParams def save_to_pytorch_benchmark_format( args: argparse.Namespace, results: dict[str, Any] ) -> None: pt_records = convert_to_pytorch_benchmark_format( args=args, metrics={"latency": results["latencies"]}, extra_info={k: results[k] for k in ["avg_latency", "percentiles"]}, ) if pt_records: pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json" write_to_json(pt_file, pt_records) def add_cli_args(parser: argparse.ArgumentParser): parser.add_argument("--input-len", type=int, default=32) parser.add_argument("--output-len", type=int, default=128) parser.add_argument("--batch-size", type=int, default=8) parser.add_argument( "--n", type=int, default=1, help="Number of generated sequences per prompt.", ) parser.add_argument("--use-beam-search", action="store_true") parser.add_argument( "--num-iters-warmup", type=int, default=10, help="Number of iterations to run for warmup.", ) parser.add_argument( "--num-iters", type=int, default=30, help="Number of iterations to run." ) parser.add_argument( "--profile", action="store_true", help="profile the generation process of a single batch", ) parser.add_argument( "--output-json", type=str, default=None, help="Path to save the latency results in JSON format.", ) parser.add_argument( "--disable-detokenize", action="store_true", help=( "Do not detokenize responses (i.e. do not include " "detokenization time in the latency measurement)" ), ) parser = EngineArgs.add_cli_args(parser) # V1 enables prefix caching by default which skews the latency # numbers. We need to disable prefix caching by default. parser.set_defaults(enable_prefix_caching=False) def main(args: argparse.Namespace): engine_args = EngineArgs.from_cli_args(args) if args.profile and not engine_args.profiler_config.profiler == "torch": raise ValueError( "The torch profiler is not enabled. Please provide profiler_config." ) # Lazy import to avoid importing LLM when the bench command is not selected. from vllm import LLM, SamplingParams # NOTE(woosuk): If the request cannot be processed in a single batch, # the engine will automatically process the request in multiple batches. llm = LLM(**dataclasses.asdict(engine_args)) assert llm.llm_engine.model_config.max_model_len >= ( args.input_len + args.output_len ), ( "Please ensure that max_model_len is greater than" " the sum of input_len and output_len." ) sampling_params = SamplingParams( n=args.n, temperature=1.0, top_p=1.0, ignore_eos=True, max_tokens=args.output_len, detokenize=not args.disable_detokenize, ) dummy_prompt_token_ids = np.random.randint( 10000, size=(args.batch_size, args.input_len) ) dummy_prompts: list[PromptType] = [ {"prompt_token_ids": batch} for batch in dummy_prompt_token_ids.tolist() ] def llm_generate(): if not args.use_beam_search: llm.generate(dummy_prompts, sampling_params=sampling_params, use_tqdm=False) else: llm.beam_search( dummy_prompts, BeamSearchParams( beam_width=args.n, max_tokens=args.output_len, ignore_eos=True, ), ) def run_to_completion(profile_dir: str | None = None): if profile_dir: llm.start_profile() llm_generate() llm.stop_profile() else: start_time = time.perf_counter() llm_generate() end_time = time.perf_counter() latency = end_time - start_time return latency print("Warming up...") for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"): run_to_completion(profile_dir=None) if args.profile: profile_dir = engine_args.profiler_config.torch_profiler_dir print(f"Profiling (results will be saved to '{profile_dir}')...") run_to_completion(profile_dir=profile_dir) return # Benchmark. latencies = [] for _ in tqdm(range(args.num_iters), desc="Profiling iterations"): latencies.append(run_to_completion(profile_dir=None)) latencies = np.array(latencies) percentages = [10, 25, 50, 75, 90, 99] percentiles = np.percentile(latencies, percentages) print(f"Avg latency: {np.mean(latencies)} seconds") for percentage, percentile in zip(percentages, percentiles): print(f"{percentage}% percentile latency: {percentile} seconds") # Output JSON results if specified if args.output_json: results = { "avg_latency": np.mean(latencies), "latencies": latencies.tolist(), "percentiles": dict(zip(percentages, percentiles.tolist())), } with open(args.output_json, "w") as f: json.dump(results, f, indent=4) save_to_pytorch_benchmark_format(args, results)