# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # adapted from https://huggingface.co/Skywork/Skywork-R1V-38B/blob/main/modeling_skywork_chat.py # -------------------------------------------------------- # SkyworkR1V # Copyright (c) 2025 Skywork # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- from collections.abc import Iterable, Mapping, Sequence from typing import Annotated, Literal, TypeAlias import torch import torch.nn as nn import torchvision.transforms as T from PIL import Image from transformers import BatchFeature, PretrainedConfig, TensorType from vllm.config import VllmConfig from vllm.config.multimodal import BaseDummyOptions from vllm.model_executor.layers.linear import ReplicatedLinear from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.quantization.awq import AWQConfig from vllm.model_executor.models.intern_vit import ( InternVisionModel, InternVisionPatchModel, ) from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.image import convert_image_mode from vllm.multimodal.inputs import ( MultiModalDataDict, MultiModalFieldConfig, MultiModalKwargsItems, ) from vllm.multimodal.parse import ( ImageEmbeddingItems, ImageProcessorItems, ImageSize, MultiModalDataItems, ) from vllm.multimodal.processing import ( BaseMultiModalProcessor, BaseProcessingInfo, PromptReplacement, PromptUpdate, PromptUpdateDetails, ) from vllm.multimodal.profiling import BaseDummyInputsBuilder from vllm.sequence import IntermediateTensors from vllm.tokenizers import TokenizerLike from vllm.utils.tensor_schema import TensorSchema, TensorShape from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP from .utils import AutoWeightsLoader, init_vllm_registered_model, maybe_prefix IMG_START = "" IMG_END = "" IMG_CONTEXT = "" IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) class SkyworkR1VImagePixelInputs(TensorSchema): """ Dimensions: - bnp: Batch size * number of images * (1 + num_patches) - c: Number of channels (3) - h: Height - w: Width - bn: Batch size * number of images """ type: Literal["pixel_values"] = "pixel_values" pixel_values_flat: Annotated[ torch.Tensor, TensorShape("bnp", 3, "h", "w"), ] num_patches: Annotated[ torch.Tensor, TensorShape("bn"), ] class SkyworkR1VImageEmbeddingInputs(TensorSchema): """ Dimensions: - ni: Number of images - ifs: Image feature size - hs: Hidden size (must match the hidden size of language model backbone) """ type: Literal["image_embeds"] = "image_embeds" data: Annotated[ torch.Tensor | list[torch.Tensor], TensorShape("ni", "ifs", "hs"), ] SkyworkR1VImageInputs: TypeAlias = ( SkyworkR1VImagePixelInputs | SkyworkR1VImageEmbeddingInputs ) # adapted from https://huggingface.co/Skywork/Skywork-R1V-38B/ def build_transform(input_size: int): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD return T.Compose( [ T.Lambda(lambda img: convert_image_mode(img, "RGB")), T.Resize( (input_size, input_size), interpolation=T.InterpolationMode.BICUBIC ), T.ToTensor(), T.Normalize(mean=MEAN, std=STD), ] ) # adapted from https://huggingface.co/Skywork/Skywork-R1V-38B/ def find_closest_aspect_ratio( aspect_ratio: float, target_ratios: list[tuple[int, int]], *, width: int, height: int, image_size: int, ) -> tuple[int, int]: best_ratio_diff = float("inf") best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def resolve_skyworkr1v_min_max_num( *, min_dynamic_patch: int, max_dynamic_patch: int, dynamic_image_size: bool, use_thumbnail: bool, ) -> tuple[int, int]: min_dynamic_patch = min_dynamic_patch if dynamic_image_size else 1 max_dynamic_patch = max_dynamic_patch if dynamic_image_size else 1 if use_thumbnail and max_dynamic_patch != 1: max_dynamic_patch += 1 return min_dynamic_patch, max_dynamic_patch def get_skyworkr1v_target_ratios( min_num: int, max_num: int, ) -> list[tuple[int, int]]: target_ratios = { (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if min_num <= i * j <= max_num } return sorted(target_ratios, key=lambda x: x[0] * x[1]) def calculate_skyworkr1v_targets( *, orig_width: int, orig_height: int, target_ratios: list[tuple[int, int]], image_size: int, use_thumbnail: bool, ) -> tuple[int, int, int]: aspect_ratio = orig_width / orig_height # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, width=orig_width, height=orig_height, image_size=image_size, ) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # add thumbnail image if num_blocks != 1 if use_thumbnail and blocks != 1: blocks += 1 return blocks, target_width, target_height def dynamic_preprocess_skyworkr1v( image: Image.Image, *, target_ratios: list[tuple[int, int]], image_size: int, use_thumbnail: bool, ) -> list[Image.Image]: orig_width, orig_height = image.size # calculate the number of blocks without thumbnail blocks, target_width, target_height = calculate_skyworkr1v_targets( orig_width=orig_width, orig_height=orig_height, target_ratios=target_ratios, image_size=image_size, use_thumbnail=False, ) # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size, ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images # adapted from https://huggingface.co/Skywork/Skywork-R1V-38B def image_to_pixel_values_skyworkr1v( image: Image.Image, *, input_size: int, min_num: int, max_num: int, use_thumbnail: bool, ) -> torch.Tensor: target_ratios = get_skyworkr1v_target_ratios(min_num, max_num) transform = build_transform(input_size=input_size) images = dynamic_preprocess_skyworkr1v( image, target_ratios=target_ratios, image_size=input_size, use_thumbnail=use_thumbnail, ) pixel_values = torch.stack([transform(image) for image in images]) return pixel_values class SkyworkR1VProcessor: """ This model doesn't define its own HF processor, so we implement our own one here. The code to insert image tokens is based on: https://huggingface.co/Skywork/Skywork-R1V-38B/blob/main/modeling_skywork_chat.py#L252 """ def __init__( self, config: PretrainedConfig, tokenizer: TokenizerLike, *, min_dynamic_patch: int | None = None, max_dynamic_patch: int | None = None, dynamic_image_size: bool | None = None, ) -> None: super().__init__() self.config = config self.tokenizer = tokenizer image_size: int = config.vision_config.image_size patch_size: int = config.vision_config.patch_size if min_dynamic_patch is None: min_dynamic_patch = config.min_dynamic_patch assert isinstance(min_dynamic_patch, int) if max_dynamic_patch is None: max_dynamic_patch = config.max_dynamic_patch assert isinstance(max_dynamic_patch, int) if dynamic_image_size is None: dynamic_image_size = config.dynamic_image_size assert isinstance(dynamic_image_size, bool) self.num_image_token = int( (image_size // patch_size) ** 2 * (config.downsample_ratio**2) ) self.image_size = image_size self.min_dynamic_patch = min_dynamic_patch self.max_dynamic_patch = max_dynamic_patch self.dynamic_image_size = dynamic_image_size self.use_thumbnail: bool = config.use_thumbnail @property def image_token_id(self) -> int: return self.tokenizer.get_vocab()[IMG_CONTEXT] def get_image_repl( self, feature_size: int, num_patches: int | None, ) -> PromptUpdateDetails[str]: repl_features = IMG_CONTEXT * feature_size repl_full = IMG_START + repl_features + IMG_END return PromptUpdateDetails.select_text(repl_full, IMG_CONTEXT) def resolve_min_max_num( self, *, min_dynamic_patch: int | None = None, max_dynamic_patch: int | None = None, dynamic_image_size: bool | None = None, use_thumbnail: bool | None = None, ) -> tuple[int, int]: min_dynamic_patch = ( self.min_dynamic_patch if min_dynamic_patch is None else min_dynamic_patch ) max_dynamic_patch = ( self.max_dynamic_patch if max_dynamic_patch is None else max_dynamic_patch ) dynamic_image_size = ( self.dynamic_image_size if dynamic_image_size is None else dynamic_image_size ) use_thumbnail = self.use_thumbnail if use_thumbnail is None else use_thumbnail return resolve_skyworkr1v_min_max_num( min_dynamic_patch=min_dynamic_patch, max_dynamic_patch=max_dynamic_patch, dynamic_image_size=dynamic_image_size, use_thumbnail=use_thumbnail, ) def resolve_target_ratios( self, *, min_dynamic_patch: int | None = None, max_dynamic_patch: int | None = None, dynamic_image_size: bool | None = None, use_thumbnail: bool | None = None, ) -> list[tuple[int, int]]: min_num, max_num = self.resolve_min_max_num( min_dynamic_patch=min_dynamic_patch, max_dynamic_patch=max_dynamic_patch, dynamic_image_size=dynamic_image_size, use_thumbnail=use_thumbnail, ) return get_skyworkr1v_target_ratios(min_num, max_num) def get_num_image_tokens( self, *, image_width: int, image_height: int, ) -> int: target_ratios = self.resolve_target_ratios( use_thumbnail=False, # Applied in calculate_targets ) num_patches, _, _ = calculate_skyworkr1v_targets( orig_width=image_width, orig_height=image_height, image_size=self.image_size, target_ratios=target_ratios, use_thumbnail=self.use_thumbnail, ) return num_patches * self.num_image_token def _images_to_pixel_values_lst( self, images: list[Image.Image], min_dynamic_patch: int | None = None, max_dynamic_patch: int | None = None, dynamic_image_size: bool | None = None, ) -> list[torch.Tensor]: min_num, max_num = self.resolve_min_max_num( min_dynamic_patch=min_dynamic_patch, max_dynamic_patch=max_dynamic_patch, dynamic_image_size=dynamic_image_size, use_thumbnail=False, # Applied in image_to_pixel_values ) return [ image_to_pixel_values_skyworkr1v( image, input_size=self.image_size, min_num=min_num, max_num=max_num, use_thumbnail=self.use_thumbnail, ) for image in images ] def __call__( self, text: str | list[str] | None = None, images: Image.Image | list[Image.Image] | None = None, min_dynamic_patch: int | None = None, max_dynamic_patch: int | None = None, dynamic_image_size: bool | None = None, return_tensors: str | TensorType | None = None, ) -> BatchFeature: if text is None: text = [] if not isinstance(text, list): text = [text] if images is None: images = [] if not isinstance(images, list): images = [images] if len(images) == 0: image_inputs = {} else: pixel_values_lst = self._images_to_pixel_values_lst( images, min_dynamic_patch=min_dynamic_patch, max_dynamic_patch=max_dynamic_patch, dynamic_image_size=dynamic_image_size, ) image_inputs = { "pixel_values_flat": torch.cat(pixel_values_lst), "image_num_patches": torch.tensor( [len(item) for item in pixel_values_lst] ), } for pixel_values in pixel_values_lst: num_patches = pixel_values.shape[0] feature_size = num_patches * self.num_image_token image_repl = self.get_image_repl(feature_size, num_patches) text = [t.replace("", image_repl.full, 1) for t in text] text_inputs = self.tokenizer(text) combined_outputs = {**text_inputs, **image_inputs} return BatchFeature(combined_outputs, tensor_type=return_tensors) class SkyworkR1VProcessingInfo(BaseProcessingInfo): def get_hf_processor(self, **kwargs: object) -> SkyworkR1VProcessor: return self.ctx.init_processor( SkyworkR1VProcessor, config=self.get_hf_config(), tokenizer=self.get_tokenizer(), **kwargs, ) def get_supported_mm_limits(self) -> Mapping[str, int | None]: return {"image": None} def get_num_image_tokens( self, *, image_width: int, image_height: int, processor: SkyworkR1VProcessor | None, ) -> int: if processor is None: processor = self.get_hf_processor() return processor.get_num_image_tokens( image_width=image_width, image_height=image_height, ) def get_image_size_with_most_features(self) -> ImageSize: processor = self.get_hf_processor() base_size = processor.image_size target_ratios = processor.resolve_target_ratios() largest_feature_size, largest_feature_pinpoint = 0, None for wr, hr in target_ratios: width, height = base_size * wr, base_size * hr feat_size = self.get_num_image_tokens( image_width=width, image_height=height, processor=processor, ) if feat_size > largest_feature_size: largest_feature_size = feat_size largest_feature_pinpoint = ImageSize(width=width, height=height) if largest_feature_size == 0 or largest_feature_pinpoint is None: raise ValueError("Cannot have a largest feature size of 0!") return largest_feature_pinpoint class SkyworkR1VDummyInputsBuilder(BaseDummyInputsBuilder[SkyworkR1VProcessingInfo]): def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str: num_images = mm_counts.get("image", 0) return "" * num_images def get_dummy_mm_data( self, seq_len: int, mm_counts: Mapping[str, int], mm_options: Mapping[str, BaseDummyOptions] | None = None, ) -> MultiModalDataDict: target_width, target_height = self.info.get_image_size_with_most_features() num_images = mm_counts.get("image", 0) image_overrides = mm_options.get("image") if mm_options else None return { "image": self._get_dummy_images( width=target_width, height=target_height, num_images=num_images, overrides=image_overrides, ) } class SkyworkR1VMultiModalProcessor(BaseMultiModalProcessor[SkyworkR1VProcessingInfo]): def _call_hf_processor( self, prompt: str, mm_data: Mapping[str, object], mm_kwargs: Mapping[str, object], tok_kwargs: Mapping[str, object], ) -> BatchFeature: processed_outputs = super()._call_hf_processor( prompt=prompt, mm_data=mm_data, mm_kwargs=mm_kwargs, tok_kwargs=tok_kwargs, ) hf_processor = self.info.get_hf_processor(**mm_kwargs) image_token_id = hf_processor.image_token_id # Since there may be extra tokens in the feature placeholders, # we need to pass the image token ID to the model to select the # tokens to merge from the vision encoder outputs processed_outputs["image_token_id"] = torch.tensor(image_token_id) return processed_outputs def _get_mm_fields_config( self, hf_inputs: BatchFeature, hf_processor_mm_kwargs: Mapping[str, object], ) -> Mapping[str, MultiModalFieldConfig]: image_num_patches = hf_inputs.get("image_num_patches", torch.empty(0)) num_images = len(image_num_patches) return dict( pixel_values_flat=MultiModalFieldConfig.flat_from_sizes( "image", image_num_patches ), image_num_patches=MultiModalFieldConfig.batched("image"), image_embeds=MultiModalFieldConfig.batched("image"), image_token_id=MultiModalFieldConfig.shared("image", num_images), ) def _get_prompt_updates( self, mm_items: MultiModalDataItems, hf_processor_mm_kwargs: Mapping[str, object], out_mm_kwargs: MultiModalKwargsItems, ) -> Sequence[PromptUpdate]: hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs) out_mm_data = out_mm_kwargs.get_data() if "image_num_patches" in out_mm_data: image_num_patches = out_mm_data["image_num_patches"] assert isinstance(image_num_patches, torch.Tensor) image_num_patches = image_num_patches.tolist() elif "image_embeds" in out_mm_data: # TODO: Use image size information in dictionary embedding inputs # to compute num_patches (similar to Qwen2-VL) image_num_patches = [None] * len(out_mm_data["image_embeds"]) else: image_num_patches = [] def get_replacement_skyworkr1v(item_idx: int): images = mm_items.get_items( "image", (ImageEmbeddingItems, ImageProcessorItems) ) if isinstance(images, ImageEmbeddingItems): feature_size = images.get_feature_size(item_idx) else: image_size = images.get_image_size(item_idx) feature_size = self.info.get_num_image_tokens( image_width=image_size.width, image_height=image_size.height, processor=hf_processor, ) num_patches = image_num_patches[item_idx] if num_patches is not None: assert isinstance(num_patches, int) return hf_processor.get_image_repl(feature_size, num_patches) return [ PromptReplacement( modality="image", target="", replacement=get_replacement_skyworkr1v, ) ] @MULTIMODAL_REGISTRY.register_processor( SkyworkR1VMultiModalProcessor, info=SkyworkR1VProcessingInfo, dummy_inputs=SkyworkR1VDummyInputsBuilder, ) class SkyworkR1VChatModel(nn.Module, SupportsMultiModal, SupportsPP): @classmethod def get_placeholder_str(cls, modality: str, i: int) -> str | None: if modality.startswith("image"): return "" raise ValueError("Only image modality is supported") def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None: super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config multimodal_config = vllm_config.model_config.multimodal_config self.config = config self.multimodal_config = multimodal_config self._patch_quant_config(config, quant_config) image_size = config.force_image_size or config.vision_config.image_size patch_size = config.vision_config.patch_size self.patch_size = patch_size self.num_image_token = int( (image_size // patch_size) ** 2 * (config.downsample_ratio**2) ) self.downsample_ratio = config.downsample_ratio self.ps_version = config.ps_version self.llm_arch_name = config.text_config.architectures[0] self.is_mono = self.llm_arch_name == "SkyworkLM2VEForCausalLM" self.vision_model = self._init_vision_model( config, quant_config=quant_config, is_mono=self.is_mono, prefix=maybe_prefix(prefix, "vision_model"), ) self.language_model = init_vllm_registered_model( vllm_config=vllm_config, hf_config=config.text_config, prefix=maybe_prefix(prefix, "language_model"), ) self.mlp1 = self._init_mlp1( config, quant_config, prefix=maybe_prefix(prefix, "mlp1") ) self.img_context_token_id = None self.visual_token_mask = None self.make_empty_intermediate_tensors = ( self.language_model.make_empty_intermediate_tensors ) def _patch_quant_config( self, config: PretrainedConfig, quant_config: QuantizationConfig ): # the awq models from OpenGVLab missing `modules_to_not_convert` # patch the quant_config to add `modules_to_not_convert` back if isinstance(quant_config, AWQConfig): text_config = config.text_config llm_quant_config = getattr(text_config, "quantization_config", None) if (not quant_config.modules_to_not_convert) and ( llm_quant_config is not None ): quant_config.modules_to_not_convert.append("vision_model") def _init_vision_model( self, config: PretrainedConfig, quant_config: QuantizationConfig | None, *, is_mono: bool, prefix: str, ): if not is_mono: vision_feature_layer = config.select_layer if vision_feature_layer < 0: num_hidden_layers = ( config.vision_config.num_hidden_layers + vision_feature_layer + 1 ) else: num_hidden_layers = vision_feature_layer + 1 return InternVisionModel( config.vision_config, quant_config=quant_config, num_hidden_layers_override=num_hidden_layers, prefix=prefix, ) else: return InternVisionPatchModel(config.vision_config) def _init_mlp1( self, config: PretrainedConfig, quant_config: QuantizationConfig, prefix: str = "", ) -> nn.Module: vit_hidden_size = config.vision_config.hidden_size llm_hidden_size = config.text_config.hidden_size return nn.Sequential( nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), ReplicatedLinear( vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size, return_bias=False, quant_config=quant_config, prefix=f"{prefix}.1", ), nn.GELU(), ReplicatedLinear( llm_hidden_size, llm_hidden_size, return_bias=False, quant_config=quant_config, prefix=f"{prefix}.3", ), ) def pixel_shuffle(self, x, scale_factor=0.5): n, w, h, c = x.size() # N, W, H, C --> N, W, H * scale, C // scale x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) # N, W, H * scale, C // scale --> N, H * scale, W, C // scale x = x.permute(0, 2, 1, 3).contiguous() x = x.view( n, int(h * scale_factor), int(w * scale_factor), int(c / (scale_factor * scale_factor)), ) if self.ps_version == "v1": pass else: x = x.permute(0, 2, 1, 3).contiguous() return x def extract_feature(self, pixel_values: torch.Tensor) -> torch.Tensor: vit_embeds = self.vision_model(pixel_values=pixel_values) vit_embeds = vit_embeds[:, 1:, :] h = w = int(vit_embeds.shape[1] ** 0.5) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) vit_embeds = self.mlp1(vit_embeds) return vit_embeds def _parse_and_validate_image_input( self, **kwargs: object ) -> SkyworkR1VImageInputs | None: pixel_values_flat = kwargs.pop("pixel_values_flat", None) image_num_patches = kwargs.pop("image_num_patches", None) image_embeds = kwargs.pop("image_embeds", None) if pixel_values_flat is None and image_embeds is None: return None if image_embeds is not None: return SkyworkR1VImageEmbeddingInputs( type="image_embeds", data=image_embeds, ) image_token_id = kwargs["image_token_id"] if isinstance(image_token_id, torch.Tensor): image_token_id = image_token_id.flatten().unique().item() assert isinstance(image_token_id, int) self.img_context_token_id = image_token_id if pixel_values_flat is not None: return SkyworkR1VImagePixelInputs( type="pixel_values", pixel_values_flat=pixel_values_flat, num_patches=image_num_patches, resolve_bindings={ "h": self.config.vision_config.image_size, "w": self.config.vision_config.image_size, }, ) raise AssertionError("This line should be unreachable.") def _process_image_input( self, image_input: SkyworkR1VImageInputs, ) -> torch.Tensor | list[torch.Tensor] | tuple[torch.Tensor, ...]: if image_input["type"] == "image_embeds": return image_input["data"] assert self.vision_model is not None image_embeds = self.extract_feature(image_input["pixel_values_flat"]) num_patches = image_input["num_patches"] # Only one image in the current batch if len(num_patches) == 1: return image_embeds.view(-1, self.config.text_config.hidden_size).unsqueeze( 0 ) # NOTE: Image embeddings are split into separate tensors for each image # by the size of each embedding. feature_size = image_embeds.shape[1] image_embeds = image_embeds.view(-1, self.config.text_config.hidden_size) image_feature_sizes = [ num_patches * feature_size for num_patches in num_patches ] return image_embeds.split(image_feature_sizes) def _set_visual_token_mask(self, input_ids: torch.Tensor) -> None: if self.is_mono: self.visual_token_mask = (input_ids == self.img_context_token_id).reshape( -1, 1 ) else: self.visual_token_mask = None def get_language_model(self) -> torch.nn.Module: return self.language_model def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings: image_input = self._parse_and_validate_image_input(**kwargs) if image_input is None: return [] return self._process_image_input(image_input) def embed_input_ids( self, input_ids: torch.Tensor, multimodal_embeddings: MultiModalEmbeddings | None = None, *, is_multimodal: torch.Tensor | None = None, handle_oov_mm_token: bool = False, ) -> torch.Tensor: if multimodal_embeddings is not None and len(multimodal_embeddings) > 0: self._set_visual_token_mask(input_ids) # This is to satisfy the type checker for each overload if multimodal_embeddings is None or is_multimodal is None: return super().embed_input_ids(input_ids) return super().embed_input_ids( input_ids, multimodal_embeddings=multimodal_embeddings, is_multimodal=is_multimodal, handle_oov_mm_token=handle_oov_mm_token, ) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, **kwargs: object, ) -> IntermediateTensors: if intermediate_tensors is not None: input_ids = None inputs_embeds = None forward_kwargs = { "input_ids": input_ids, "positions": positions, "intermediate_tensors": intermediate_tensors, "inputs_embeds": inputs_embeds, } # Only required if the model is mono-architecture if self.visual_token_mask is not None: forward_kwargs.update({"visual_token_mask": self.visual_token_mask}) self.visual_token_mask = None hidden_states = self.language_model.model(**forward_kwargs) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: return self.language_model.compute_logits(hidden_states) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: skip_prefixes = [ "action_embed", "temporal_embed", "track_embed", "track_embed_decoder", "box_token", "cg_criterion", "cg_model", "loc_encoder", "loc_decoder", "sam", "temporal_token", "track_token", ] loader = AutoWeightsLoader(self, skip_prefixes=skip_prefixes) return loader.load_weights(weights)