# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Copyright 2025 The ZhipuAI Team. # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only GLM-4.5 MTP model compatible with HuggingFace weights.""" from collections.abc import Iterable import torch import torch.nn as nn from transformers import PretrainedConfig from vllm.config import CacheConfig, ParallelConfig, VllmConfig from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.sequence import IntermediateTensors from .glm4_moe import ( Glm4MixtureOfExperts, Glm4MoE, Glm4MoeDecoderLayer, get_spec_layer_idx_from_weight_name, ) from .interfaces import SupportsPP from .utils import maybe_prefix class SharedHead(nn.Module): def __init__( self, config: PretrainedConfig, prefix: str, quant_config: QuantizationConfig | None = None, ) -> None: super().__init__() self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.head = ParallelLMHead( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=maybe_prefix(prefix, "head"), ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return self.norm(hidden_states) class Glm4MoeMultiTokenPredictorLayer(nn.Module): def __init__( self, config: PretrainedConfig, prefix: str, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, parallel_config: ParallelConfig | None = None, ) -> None: super().__init__() self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.eh_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False) self.shared_head = SharedHead( config=config, prefix=prefix, quant_config=quant_config ) self.enable_eplb = parallel_config.enable_eplb self.mtp_block = Glm4MoeDecoderLayer( config=config, cache_config=cache_config, quant_config=quant_config, prefix=prefix, enable_eplb=self.enable_eplb, ) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, previous_hidden_states: torch.Tensor, inputs_embeds: torch.Tensor | None = None, spec_step_index: int = 0, ) -> torch.Tensor: assert inputs_embeds is not None # masking inputs at position 0, as not needed by MTP inputs_embeds[positions == 0] = 0 inputs_embeds = self.enorm(inputs_embeds) previous_hidden_states = self.hnorm(previous_hidden_states) hidden_states = self.eh_proj( torch.cat([inputs_embeds, previous_hidden_states], dim=-1) ) hidden_states, residual = self.mtp_block( positions=positions, hidden_states=hidden_states, residual=None ) hidden_states = residual + hidden_states return hidden_states class Glm4MoeMultiTokenPredictor(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config self.mtp_start_layer_idx = config.num_hidden_layers self.num_mtp_layers = config.num_nextn_predict_layers # to map the exact layer index from weights self.layers = torch.nn.ModuleDict( { str(idx): Glm4MoeMultiTokenPredictorLayer( config, f"{prefix}.layers.{idx}", cache_config=vllm_config.cache_config, quant_config=vllm_config.quant_config, parallel_config=vllm_config.parallel_config, ) for idx in range( self.mtp_start_layer_idx, self.mtp_start_layer_idx + self.num_mtp_layers, ) } ) self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.logits_processor = LogitsProcessor(config.vocab_size) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, previous_hidden_states: torch.Tensor, inputs_embeds: torch.Tensor | None = None, spec_step_idx: int = 0, ) -> torch.Tensor: if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) current_step_idx = spec_step_idx % self.num_mtp_layers return self.layers[str(self.mtp_start_layer_idx + current_step_idx)]( input_ids, positions, previous_hidden_states, inputs_embeds, current_step_idx, ) def compute_logits( self, hidden_states: torch.Tensor, spec_step_idx: int = 0, ) -> torch.Tensor: current_step_idx = spec_step_idx % self.num_mtp_layers mtp_layer = self.layers[str(self.mtp_start_layer_idx + current_step_idx)] logits = self.logits_processor( mtp_layer.shared_head.head, mtp_layer.shared_head(hidden_states) ) return logits class Glm4MoeMTP(nn.Module, SupportsPP, Glm4MixtureOfExperts): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() self.config = vllm_config.model_config.hf_config self.model = Glm4MoeMultiTokenPredictor( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") ) self.expert_weights = [] # Set MoE hyperparameters self.num_moe_layers = self.config.num_nextn_predict_layers self.num_expert_groups = self.config.n_group self.moe_layers: list[FusedMoE] = [] self.moe_mlp_layers: list[Glm4MoE] = [] example_moe = None for layer in self.model.layers.values(): assert isinstance(layer, Glm4MoeMultiTokenPredictorLayer) layer = layer.mtp_block assert isinstance(layer, Glm4MoeDecoderLayer) if isinstance(layer.mlp, Glm4MoE): example_moe = layer.mlp self.moe_mlp_layers.append(layer.mlp) self.moe_layers.append(layer.mlp.experts) self.extract_moe_parameters(example_moe) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.embed_input_ids(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, hidden_states: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, spec_step_idx: int = 0, ) -> torch.Tensor: hidden_states = self.model( input_ids, positions, hidden_states, inputs_embeds, spec_step_idx ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, spec_step_idx: int = 0, ) -> torch.Tensor | None: return self.model.compute_logits(hidden_states, spec_step_idx) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] # Params for weights, fp8 weight scales, fp8 activation scales # (param_name, weight_name, expert_id, shard_id) expert_params_mapping = FusedMoE.make_expert_params_mapping( ckpt_gate_proj_name="gate_proj", ckpt_down_proj_name="down_proj", ckpt_up_proj_name="up_proj", num_experts=self.config.n_routed_experts, ) params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() for name, loaded_weight in weights: if name == "lm_head.weight": spec_layer = self.model.mtp_start_layer_idx name = f"model.layers.{spec_layer}.shared_head.head.weight" elif name == "model.embed_tokens.weight": spec_layer = self.model.mtp_start_layer_idx else: spec_layer = get_spec_layer_idx_from_weight_name(self.config, name) if spec_layer is None: continue name = self._rewrite_spec_layer_name(spec_layer, name) for param_name, weight_name, shard_id in stacked_params_mapping: # Skip non-stacked layers and experts (experts handled below). if weight_name not in name: continue # We have mlp.experts[0].gate_proj in the checkpoint. # Since we handle the experts below in expert_params_mapping, # we need to skip here BEFORE we update the name, otherwise # name will be updated to mlp.experts[0].gate_up_proj, which # will then be updated below in expert_params_mapping # for mlp.experts[0].gate_gate_up_proj, which breaks load. if ("mlp.experts." in name) and name not in params_dict: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: for mapping in expert_params_mapping: param_name, weight_name, expert_id, shard_id = mapping if weight_name not in name: continue name = name.replace(weight_name, param_name) param = params_dict[name] weight_loader = param.weight_loader weight_loader( param, loaded_weight, name, shard_id=shard_id, expert_id=expert_id, ) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # According to DeepSeek-V3 Technical Report, MTP modules # shares embedding layer. We only load the first weights. if ( spec_layer != self.model.mtp_start_layer_idx and ".layers" not in name ): continue param = params_dict[name] weight_loader = getattr( param, "weight_loader", default_weight_loader ) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params def _rewrite_spec_layer_name(self, spec_layer: int, name: str) -> str: """ Rewrite the weight name to match the format of the original model. Add .mtp_block for modules in transformer layer block for spec layer and rename shared layer weights to be top level. """ spec_layer_weight_names = [ "embed_tokens", "enorm", "hnorm", "eh_proj", "shared_head", ] shared_weight_names = ["embed_tokens"] spec_layer_weight = False shared_weight = False for weight_name in spec_layer_weight_names: if weight_name in name: spec_layer_weight = True if weight_name in shared_weight_names: shared_weight = True break if not spec_layer_weight: # treat rest weights as weights for transformer layer block name = name.replace( f"model.layers.{spec_layer}.", f"model.layers.{spec_layer}.mtp_block." ) elif shared_weight: # treat shared weights as top level weights name = name.replace(f"model.layers.{spec_layer}.", "model.") return name