# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # adapted from https://github.com/huggingface/transformers/blob/v4.39.3/src/transformers/models/persimmon/modeling_persimmon.py # Copyright 2023 The vLLM team. # Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only persimmon model compatible with HuggingFace weights.""" from collections.abc import Iterable from itertools import islice import torch from torch import nn from transformers import PersimmonConfig from vllm.attention.layer import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size from vllm.model_executor.layers.activation import get_act_fn from vllm.model_executor.layers.linear import ( ColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.sequence import IntermediateTensors from .interfaces import SupportsPP from .utils import ( AutoWeightsLoader, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix, ) class PersimmonMLP(nn.Module): def __init__( self, config: PersimmonConfig, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.dense_h_to_4h = ColumnParallelLinear( config.hidden_size, config.intermediate_size, quant_config=quant_config, prefix=f"{prefix}.dense_h_to_4h", ) self.dense_4h_to_h = RowParallelLinear( config.intermediate_size, config.hidden_size, quant_config=quant_config, prefix=f"{prefix}.dense_4h_to_h", ) self.act = get_act_fn(config.hidden_act) def forward(self, hidden_states) -> torch.Tensor: hidden_states, _ = self.dense_h_to_4h(hidden_states) hidden_states = self.act(hidden_states) hidden_states, _ = self.dense_4h_to_h(hidden_states) return hidden_states class PersimmonAttention(nn.Module): def __init__( self, config: PersimmonConfig, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.config = config tensor_parallel_world_size = get_tensor_model_parallel_world_size() self.hidden_size = config.hidden_size self.total_num_heads = config.num_attention_heads self.num_heads = self.total_num_heads // tensor_parallel_world_size self.head_dim = self.hidden_size // self.total_num_heads self.max_position_embeddings = config.max_position_embeddings self.is_causal = True assert (self.head_dim * self.total_num_heads) == self.hidden_size assert self.total_num_heads % tensor_parallel_world_size == 0 self.query_key_value = QKVParallelLinear( self.hidden_size, self.head_dim, self.total_num_heads, bias=True, quant_config=quant_config, prefix=f"{prefix}.query_key_value", ) self.dense = RowParallelLinear( self.total_num_heads * self.head_dim, self.hidden_size, bias=True, quant_config=quant_config, prefix=f"{prefix}.dense", ) self.is_qk_layernorm = config.qk_layernorm if self.is_qk_layernorm: self.q_layernorm = nn.LayerNorm(self.head_dim) self.k_layernorm = nn.LayerNorm(self.head_dim) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=self.max_position_embeddings, rope_parameters=config.rope_parameters, ) self.scaling = self.head_dim**-0.5 self.attn = Attention( self.num_heads, self.head_dim, scale=self.scaling, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn", ) def _split_heads(self, x: torch.Tensor) -> torch.Tensor: # [seq_length, hidden_size] -> [seq_length, num_heads, head_dim] seq_length = x.shape[0] return x.view(seq_length, self.num_heads, self.head_dim) def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: # [seq_length, num_heads, head_dim] -> [seq_length, hidden_size] seq_length = x.shape[0] return x.view(seq_length, self.num_heads * self.head_dim) def forward( self, position_ids: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: # [seq_length, 3 x hidden_size] qkv, _ = self.query_key_value(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) if self.is_qk_layernorm: # [seq_length, num_heads, head_dim] q = self._split_heads(q) k = self._split_heads(k) q = self.q_layernorm(q) k = self.k_layernorm(k) q = self._merge_heads(q) k = self._merge_heads(k) q, k = self.rotary_emb(position_ids, q, k) attn_output = self.attn(q, k, v) output, _ = self.dense(attn_output) return output class PersimmonDecoderLayer(nn.Module): def __init__( self, config: PersimmonConfig, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.hidden_size = config.hidden_size self.self_attn = PersimmonAttention( config=config, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.self_attn", ) self.mlp = PersimmonMLP( config, quant_config=quant_config, prefix=f"{prefix}.mlp", ) self.input_layernorm = nn.LayerNorm( config.hidden_size, eps=config.layer_norm_eps ) self.post_attention_layernorm = nn.LayerNorm( config.hidden_size, eps=config.layer_norm_eps ) def forward( self, position_ids: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states = self.self_attn( position_ids=position_ids, hidden_states=hidden_states, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = hidden_states + residual outputs = hidden_states return outputs @support_torch_compile class PersimmonModel(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.vocab_size = config.vocab_size self.config = config self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size ) self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: PersimmonDecoderLayer( config, cache_config, quant_config, prefix=prefix ), prefix=f"{prefix}.layers", ) self.final_layernorm = nn.LayerNorm( config.hidden_size, eps=config.layer_norm_eps ) self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( ["hidden_states"], config.hidden_size ) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.embed_input_ids(input_ids) else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] for layer in islice(self.layers, self.start_layer, self.end_layer): hidden_states = layer(positions, hidden_states) if not get_pp_group().is_last_rank: return IntermediateTensors({"hidden_states": hidden_states}) hidden_states = self.final_layernorm(hidden_states) return hidden_states def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: params_dict = dict(self.named_parameters(remove_duplicate=False)) loaded_params: set[str] = set() for name, loaded_weight in weights: if is_pp_missing_parameter(name, self): continue param = params_dict[name] if "query_key_value" in name: # copy from vllm/model_executor/models/bloom.py # NOTE: Persimmon's fused QKV's output_dim has the shape of # (num_heads * 3 * head_size), while the # required shape is (3 * num_heads * head_size). # Thus, we need weight conversion. output_dim = getattr(param, "output_dim", None) num_heads = self.config.num_attention_heads if output_dim is not None: loaded_weight_shape = loaded_weight.shape loaded_weight = loaded_weight.view( loaded_weight_shape[:output_dim] + (num_heads, 3, -1) + loaded_weight_shape[output_dim + 1 :] ) loaded_weight = loaded_weight.transpose(output_dim, output_dim + 1) loaded_weight = loaded_weight.reshape(loaded_weight_shape) weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class PersimmonForCausalLM(nn.Module, SupportsPP): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config self.config = config self.vocab_size = config.vocab_size self.model = PersimmonModel( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") ) self.lm_head = ParallelLMHead( config.vocab_size, config.hidden_size, bias=False, prefix=maybe_prefix(prefix, "lm_head"), ) self.logits_processor = LogitsProcessor(config.vocab_size) self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors ) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.embed_input_ids(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ): hidden_states = self.model( input_ids=input_ids, positions=positions, intermediate_tensors=intermediate_tensors, inputs_embeds=inputs_embeds, ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: logits = self.logits_processor(self.lm_head, hidden_states) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader(self) return loader.load_weights(weights)