# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import datetime import json import logging import os import platform import time from enum import Enum from pathlib import Path from threading import Thread from typing import Any from uuid import uuid4 import cpuinfo import psutil import requests import torch import vllm.envs as envs from vllm.connections import global_http_connection from vllm.logger import init_logger from vllm.utils.platform_utils import cuda_get_device_properties from vllm.utils.torch_utils import cuda_device_count_stateless from vllm.version import __version__ as VLLM_VERSION logger = init_logger(__name__) _config_home = envs.VLLM_CONFIG_ROOT _USAGE_STATS_JSON_PATH = os.path.join(_config_home, "usage_stats.json") _USAGE_STATS_DO_NOT_TRACK_PATH = os.path.join(_config_home, "do_not_track") _USAGE_STATS_ENABLED = None _USAGE_STATS_SERVER = envs.VLLM_USAGE_STATS_SERVER _GLOBAL_RUNTIME_DATA = dict[str, str | int | bool]() _USAGE_ENV_VARS_TO_COLLECT = [ "VLLM_USE_MODELSCOPE", "VLLM_USE_TRITON_FLASH_ATTN", "VLLM_ATTENTION_BACKEND", "VLLM_USE_FLASHINFER_SAMPLER", "VLLM_PP_LAYER_PARTITION", "VLLM_USE_TRITON_AWQ", "VLLM_USE_V1", "VLLM_ENABLE_V1_MULTIPROCESSING", ] def set_runtime_usage_data(key: str, value: str | int | bool) -> None: """Set global usage data that will be sent with every usage heartbeat.""" _GLOBAL_RUNTIME_DATA[key] = value def is_usage_stats_enabled(): """Determine whether or not we can send usage stats to the server. The logic is as follows: - By default, it should be enabled. - Three environment variables can disable it: - VLLM_DO_NOT_TRACK=1 - DO_NOT_TRACK=1 - VLLM_NO_USAGE_STATS=1 - A file in the home directory can disable it if it exists: - $HOME/.config/vllm/do_not_track """ global _USAGE_STATS_ENABLED if _USAGE_STATS_ENABLED is None: do_not_track = envs.VLLM_DO_NOT_TRACK no_usage_stats = envs.VLLM_NO_USAGE_STATS do_not_track_file = os.path.exists(_USAGE_STATS_DO_NOT_TRACK_PATH) _USAGE_STATS_ENABLED = not (do_not_track or no_usage_stats or do_not_track_file) return _USAGE_STATS_ENABLED def _get_current_timestamp_ns() -> int: return int(datetime.datetime.now(datetime.timezone.utc).timestamp() * 1e9) def _detect_cloud_provider() -> str: # Try detecting through vendor file vendor_files = [ "/sys/class/dmi/id/product_version", "/sys/class/dmi/id/bios_vendor", "/sys/class/dmi/id/product_name", "/sys/class/dmi/id/chassis_asset_tag", "/sys/class/dmi/id/sys_vendor", ] # Mapping of identifiable strings to cloud providers cloud_identifiers = { "amazon": "AWS", "microsoft corporation": "AZURE", "google": "GCP", "oraclecloud": "OCI", } for vendor_file in vendor_files: path = Path(vendor_file) if path.is_file(): file_content = path.read_text().lower() for identifier, provider in cloud_identifiers.items(): if identifier in file_content: return provider # Try detecting through environment variables env_to_cloud_provider = { "RUNPOD_DC_ID": "RUNPOD", } for env_var, provider in env_to_cloud_provider.items(): if os.environ.get(env_var): return provider return "UNKNOWN" class UsageContext(str, Enum): UNKNOWN_CONTEXT = "UNKNOWN_CONTEXT" LLM_CLASS = "LLM_CLASS" API_SERVER = "API_SERVER" OPENAI_API_SERVER = "OPENAI_API_SERVER" OPENAI_BATCH_RUNNER = "OPENAI_BATCH_RUNNER" ENGINE_CONTEXT = "ENGINE_CONTEXT" class UsageMessage: """Collect platform information and send it to the usage stats server.""" def __init__(self) -> None: # NOTE: vLLM's server _only_ support flat KV pair. # Do not use nested fields. self.uuid = str(uuid4()) # Environment Information self.provider: str | None = None self.num_cpu: int | None = None self.cpu_type: str | None = None self.cpu_family_model_stepping: str | None = None self.total_memory: int | None = None self.architecture: str | None = None self.platform: str | None = None self.cuda_runtime: str | None = None self.gpu_count: int | None = None self.gpu_type: str | None = None self.gpu_memory_per_device: int | None = None self.env_var_json: str | None = None # vLLM Information self.model_architecture: str | None = None self.vllm_version: str | None = None self.context: str | None = None # Metadata self.log_time: int | None = None self.source: str | None = None def report_usage( self, model_architecture: str, usage_context: UsageContext, extra_kvs: dict[str, Any] | None = None, ) -> None: t = Thread( target=self._report_usage_worker, args=(model_architecture, usage_context, extra_kvs or {}), daemon=True, ) t.start() def _report_usage_worker( self, model_architecture: str, usage_context: UsageContext, extra_kvs: dict[str, Any], ) -> None: self._report_usage_once(model_architecture, usage_context, extra_kvs) self._report_continuous_usage() def _report_tpu_inference_usage(self) -> bool: try: from tpu_inference import tpu_info, utils self.gpu_count = tpu_info.get_num_chips() self.gpu_type = tpu_info.get_tpu_type() self.gpu_memory_per_device = utils.get_device_hbm_limit() self.cuda_runtime = "tpu_inference" return True except Exception: return False def _report_torch_xla_usage(self) -> bool: try: import torch_xla self.gpu_count = torch_xla.runtime.world_size() self.gpu_type = torch_xla.tpu.get_tpu_type() self.gpu_memory_per_device = torch_xla.core.xla_model.get_memory_info()[ "bytes_limit" ] self.cuda_runtime = "torch_xla" return True except Exception: return False def _report_usage_once( self, model_architecture: str, usage_context: UsageContext, extra_kvs: dict[str, Any], ) -> None: # Platform information from vllm.platforms import current_platform if current_platform.is_cuda_alike(): self.gpu_count = cuda_device_count_stateless() self.gpu_type, self.gpu_memory_per_device = cuda_get_device_properties( 0, ("name", "total_memory") ) if current_platform.is_cuda(): self.cuda_runtime = torch.version.cuda if current_platform.is_tpu(): # noqa: SIM102 if (not self._report_tpu_inference_usage()) and ( not self._report_torch_xla_usage() ): logger.exception("Failed to collect TPU information") self.provider = _detect_cloud_provider() self.architecture = platform.machine() self.platform = platform.platform() self.total_memory = psutil.virtual_memory().total info = cpuinfo.get_cpu_info() self.num_cpu = info.get("count", None) self.cpu_type = info.get("brand_raw", "") self.cpu_family_model_stepping = ",".join( [ str(info.get("family", "")), str(info.get("model", "")), str(info.get("stepping", "")), ] ) # vLLM information self.context = usage_context.value self.vllm_version = VLLM_VERSION self.model_architecture = model_architecture # Environment variables self.env_var_json = json.dumps( {env_var: getattr(envs, env_var) for env_var in _USAGE_ENV_VARS_TO_COLLECT} ) # Metadata self.log_time = _get_current_timestamp_ns() self.source = envs.VLLM_USAGE_SOURCE data = vars(self) if extra_kvs: data.update(extra_kvs) self._write_to_file(data) self._send_to_server(data) def _report_continuous_usage(self): """Report usage every 10 minutes. This helps us to collect more data points for uptime of vLLM usages. This function can also help send over performance metrics over time. """ while True: time.sleep(600) data = { "uuid": self.uuid, "log_time": _get_current_timestamp_ns(), } data.update(_GLOBAL_RUNTIME_DATA) self._write_to_file(data) self._send_to_server(data) def _send_to_server(self, data: dict[str, Any]) -> None: try: global_http_client = global_http_connection.get_sync_client() global_http_client.post(_USAGE_STATS_SERVER, json=data) except requests.exceptions.RequestException: # silently ignore unless we are using debug log logging.debug("Failed to send usage data to server") def _write_to_file(self, data: dict[str, Any]) -> None: os.makedirs(os.path.dirname(_USAGE_STATS_JSON_PATH), exist_ok=True) Path(_USAGE_STATS_JSON_PATH).touch(exist_ok=True) with open(_USAGE_STATS_JSON_PATH, "a") as f: json.dump(data, f) f.write("\n") usage_message = UsageMessage()