# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """ HTTP-based batch invariance test: send requests to a running vLLM server and compare BS=1 vs BS=N results (tokens and per-step logprobs). Environment variables: - VLLM_TEST_MODEL: served model name (e.g., Qwen/Qwen3-1.7B / DeepSeek-R1) - VLLM_TP_SIZE: tensor parallelism size (e.g., 4) """ import os import random import sys from typing import Any import openai from utils import _random_prompt, skip_unsupported from tests.utils import RemoteOpenAIServer def _request_completion( client: openai.OpenAI, model: str, prompt: Any, sp: dict[str, Any], max_retries: int = 3, retry_backoff: float = 0.5, ) -> dict[str, Any] | None: payload: dict[str, Any] = {"model": model, "prompt": prompt} payload.update(sp) for attempt in range(max_retries + 1): try: completion = client.completions.create(**payload) # Convert to plain dict so downstream logic can keep using # dict-style access just like with raw HTTP JSON. return completion.model_dump() except Exception as e: # pragma: no cover if attempt < max_retries: import time as _t _t.sleep(retry_backoff * (2**attempt)) continue sys.stderr.write(f"Error: {e}\n") return None return None def _extract_tokens_and_logprobs( choice: dict[str, Any], ) -> tuple[list[Any], list[float] | None]: tokens: list[Any] = [] token_logprobs: list[float] | None = None lp = choice.get("logprobs") if lp and isinstance(lp, dict): tokens = lp.get("token_ids") or lp.get("tokens") or [] token_logprobs = lp.get("token_logprobs", None) return tokens, token_logprobs def _compare_bs1_vs_bsn_single_process( prompts: list[str], sp_kwargs: dict[str, Any], client: openai.OpenAI, model_name: str, ) -> None: # BS=1 bs1_tokens_per_prompt: list[list[Any]] = [] bs1_logprobs_per_prompt: list[list[float] | None] = [] for p in prompts: resp = _request_completion(client, model_name, p, sp_kwargs) if resp is None or not resp.get("choices"): raise AssertionError("BS=1 empty/failed response") choice = resp["choices"][0] toks, lps = _extract_tokens_and_logprobs(choice) if lps is None: raise AssertionError( "logprobs not returned; ensure server supports 'logprobs'" ) bs1_tokens_per_prompt.append(list(toks)) bs1_logprobs_per_prompt.append(list(lps)) # BS=N bsN_tokens_per_prompt: list[list[Any]] = [None] * len(prompts) # type: ignore[list-item] bsN_logprobs_per_prompt: list[list[float] | None] = [None] * len(prompts) resp = _request_completion(client, model_name, prompts, sp_kwargs) if resp is None or not resp.get("choices"): raise AssertionError("BS=N empty/failed batched response") choices = resp.get("choices", []) if len(choices) != len(prompts): raise AssertionError( f"BS=N choices length {len(choices)} != num prompts {len(prompts)}" ) for idx, choice in enumerate(choices): toks, lps = _extract_tokens_and_logprobs(choice) if lps is None: raise AssertionError(f"BS=N missing logprobs for prompt {idx}") bsN_tokens_per_prompt[idx] = list(toks) bsN_logprobs_per_prompt[idx] = list(lps) # compare for i, (tokens_bs1, tokens_bsN, logprobs_bs1, logprobs_bsN) in enumerate( zip( bs1_tokens_per_prompt, bsN_tokens_per_prompt, bs1_logprobs_per_prompt, bsN_logprobs_per_prompt, ) ): if tokens_bs1 != tokens_bsN: raise AssertionError( f"Prompt {i} (sampling): Different tokens sampled. " f"BS=1 tokens: {tokens_bs1} BS=N tokens: {tokens_bsN}" ) if logprobs_bs1 is None or logprobs_bsN is None: raise AssertionError(f"Prompt {i}: Missing logprobs in one of the runs") if len(logprobs_bs1) != len(logprobs_bsN): raise AssertionError( f"Prompt {i}: Different number of steps: " f"{len(logprobs_bs1)} (BS=1) vs {len(logprobs_bsN)} (BS=N)." ) for t, (a, b) in enumerate(zip(logprobs_bs1, logprobs_bsN)): if a != b: diff = abs(a - b) raise AssertionError( f"Prompt {i} Step {t}: Bitwise mismatch " f"(abs diff={diff:.6e}). " f"BS=1 tokens: {tokens_bs1} BS=N tokens: {tokens_bsN}" ) @skip_unsupported def test_logprobs_bitwise_batch_invariance_bs1_vs_bsN(): random.seed(int(os.getenv("VLLM_TEST_SEED", "12345"))) model_name = os.getenv("VLLM_TEST_MODEL", "Qwen/Qwen3-1.7B") prompts_all = [_random_prompt(10, 50) for _ in range(32)] sp_kwargs: dict[str, Any] = { "temperature": 0.6, "top_p": 1.0, "max_tokens": 8, "seed": 42, "logprobs": 5, } tp_size = os.getenv("VLLM_TP_SIZE", "1") server_args: list[str] = [] if tp_size: server_args += ["-tp", tp_size] with RemoteOpenAIServer(model_name, server_args) as server: client = server.get_client() _compare_bs1_vs_bsn_single_process( prompts=prompts_all, sp_kwargs=sp_kwargs, client=client, model_name=model_name, )