from typing import List import pytest import vllm from vllm.assets.image import ImageAsset from vllm.lora.request import LoRARequest from ..utils import multi_gpu_test MODEL_PATH = "openbmb/MiniCPM-Llama3-V-2_5" PROMPT_TEMPLATE = ( "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" "(./)\nWhat is in the image?<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n") IMAGE_ASSETS = [ ImageAsset("stop_sign"), ImageAsset("cherry_blossom"), ] # After fine-tuning with LoRA, all generated content should start begin `A`. EXPECTED_OUTPUT = [ "A red and white stop sign with a Chinese archway in the background featuring red lanterns and gold accents.", # noqa: E501 "A pink cherry blossom tree with a blue sky in the background.", ] def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]: sampling_params = vllm.SamplingParams( temperature=0, max_tokens=5, stop_token_ids=[128001, 128009], # eos_id, eot_id ) inputs = [{ "prompt": PROMPT_TEMPLATE, "multi_modal_data": { "image": asset.pil_image }, } for asset in IMAGE_ASSETS] outputs = llm.generate( inputs, sampling_params, lora_request=LoRARequest(str(lora_id), lora_id, lora_path) if lora_id else None, ) # Print the outputs. generated_texts: List[str] = [] for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text.strip() generated_texts.append(generated_text) print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") return generated_texts @multi_gpu_test(num_gpus=2) @pytest.mark.parametrize("fully_sharded", [True, False]) def test_minicpmv_tp2(minicpmv_lora_files, fully_sharded): llm = vllm.LLM( MODEL_PATH, enable_lora=True, max_num_seqs=2, max_loras=4, max_lora_rank=64, tensor_parallel_size=2, trust_remote_code=True, fully_sharded_loras=fully_sharded, ) output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1) for i in range(len(EXPECTED_OUTPUT)): assert EXPECTED_OUTPUT[i].startswith(output_tp[i]) @multi_gpu_test(num_gpus=4) @pytest.mark.parametrize("fully_sharded", [True, False]) def test_minicpmv_tp4(minicpmv_lora_files, fully_sharded): llm = vllm.LLM( MODEL_PATH, enable_lora=True, max_num_seqs=2, max_loras=4, max_lora_rank=64, tensor_parallel_size=4, trust_remote_code=True, fully_sharded_loras=fully_sharded, ) output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1) for i in range(len(EXPECTED_OUTPUT)): assert EXPECTED_OUTPUT[i].startswith(output_tp[i])