# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Adapted from https://github.com/huggingface/transformers/tree/main/src/transformers/models/aya_vision from collections.abc import Iterable, Mapping, Sequence from typing import Annotated, Literal import torch from torch import nn from transformers import BatchFeature, GotOcr2ImageProcessor from transformers.activations import ACT2FN from transformers.image_processing_utils import get_size_dict from transformers.models.aya_vision import AyaVisionConfig from transformers.models.aya_vision.processing_aya_vision import AyaVisionProcessor from transformers.models.got_ocr2.image_processing_got_ocr2 import ( get_optimal_tiled_canvas, ) from vllm.config import VllmConfig from vllm.config.multimodal import BaseDummyOptions from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.inputs import MultiModalDataDict, MultiModalKwargsItems from vllm.multimodal.parse import ImageProcessorItems, ImageSize, MultiModalDataItems from vllm.multimodal.processing import ( BaseMultiModalProcessor, BaseProcessingInfo, MultiModalFieldConfig, PromptReplacement, PromptUpdate, PromptUpdateDetails, ) from vllm.multimodal.profiling import BaseDummyInputsBuilder from vllm.sequence import IntermediateTensors from vllm.utils.tensor_schema import TensorSchema, TensorShape from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP from .siglip import SiglipVisionModel from .utils import ( AutoWeightsLoader, WeightsMapper, init_vllm_registered_model, maybe_prefix, ) class AyaVisionImagePixelInputs(TensorSchema): """ Dimensions: - np: The total number of patches over each image over each prompt in the batch - c: Number of channels - h: Height of each image patch - w: Width of each image patch - bn: Batch size * number of images """ type: Literal["pixel_values"] pixel_values: Annotated[ torch.Tensor, TensorShape("np", 3, "h", "w"), ] num_patches: Annotated[ torch.Tensor, TensorShape("bn"), ] class AyaVisionMultiModalProjector(nn.Module): def __init__(self, config: AyaVisionConfig): super().__init__() self.config = config self.downsample_factor = config.downsample_factor self.alignment_intermediate_size = getattr( config, "alignment_intermediate_size", config.text_config.hidden_size ) self.layernorm = nn.LayerNorm( config.vision_config.hidden_size * (config.downsample_factor**2), eps=config.adapter_layer_norm_eps, ) self.linear_1 = nn.Linear( config.vision_config.hidden_size * (config.downsample_factor**2), self.alignment_intermediate_size, bias=True, ) self.act = ACT2FN["silu"] # SwiGLU uses SiLU activation # For SwiGLU, project down to half size since we split intermediate dim self.linear_2 = nn.Linear( self.alignment_intermediate_size // 2, config.text_config.hidden_size, bias=True, ) def forward(self, image_features: torch.Tensor) -> torch.Tensor: image_features = self.pixel_shuffle(image_features) image_features = self.layernorm(image_features) hidden_states = self.linear_1(image_features) # Split along last dimension and apply SwiGLU x, gate = hidden_states.chunk(2, dim=-1) hidden_states = self.act(gate) * x hidden_states = self.linear_2(hidden_states) return hidden_states def pixel_shuffle(self, image_features: torch.Tensor) -> torch.Tensor: # B, S, D batch_size, seq_length, _ = image_features.shape height = width = int(seq_length**0.5) image_features = image_features.reshape( image_features.shape[0], width, height, -1 ) channels = image_features.shape[-1] image_features = image_features.reshape( batch_size, width, int(height / self.downsample_factor), int(channels * self.downsample_factor), ) image_features = image_features.permute(0, 2, 1, 3) image_features = image_features.reshape( batch_size, int(height / self.downsample_factor), int(width / self.downsample_factor), -1, ) image_features = image_features.permute(0, 2, 1, 3) return image_features class AyaVisionProcessingInfo(BaseProcessingInfo): def get_hf_config(self) -> AyaVisionConfig: return self.ctx.get_hf_config(AyaVisionConfig) def get_hf_processor(self, **kwargs: object) -> AyaVisionProcessor: return self.ctx.get_hf_processor(AyaVisionProcessor, **kwargs) def get_image_processor(self, **kwargs: object) -> GotOcr2ImageProcessor: return self.get_hf_processor(**kwargs).image_processor def get_supported_mm_limits(self) -> Mapping[str, int | None]: return {"image": None} def get_image_size_with_most_features(self) -> ImageSize: image_processor = self.get_image_processor() height = image_processor.size["height"] width = image_processor.size["width"] max_patches = image_processor.max_patches return ImageSize(height=height * max_patches, width=width * max_patches) def get_num_patches( self, *, image_width: int, image_height: int, size: dict, min_patches: int, max_patches: int, ) -> int: """ Calculate the number of patches needed for a given image based on size constraints. This method replicates and adjusts the logic from: transformers/models/got_ocr2/image_processing_got_ocr2 """ size = get_size_dict(size, default_to_square=False) num_columns, num_rows = get_optimal_tiled_canvas( (image_height, image_width), (size["height"], size["width"]), min_patches, max_patches, ) num_blocks = num_columns * num_rows return num_blocks if num_blocks == 1 else num_blocks + 1 class AyaVisionDummyInputsBuilder(BaseDummyInputsBuilder[AyaVisionProcessingInfo]): def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str: num_images = mm_counts.get("image", 0) processor = self.info.get_hf_processor() image_token = processor.image_token return image_token * num_images def get_dummy_mm_data( self, seq_len: int, mm_counts: Mapping[str, int], mm_options: Mapping[str, BaseDummyOptions] | None = None, ) -> MultiModalDataDict: num_images = mm_counts.get("image", 0) image_size = self.info.get_image_size_with_most_features() image_overrides = mm_options.get("image") if mm_options else None return { "image": self._get_dummy_images( width=image_size.width, height=image_size.height, num_images=num_images, overrides=image_overrides, ) } class AyaVisionMultiModalProcessor(BaseMultiModalProcessor[AyaVisionProcessingInfo]): def _call_hf_processor( self, prompt: str, mm_data: Mapping[str, object], mm_kwargs: Mapping[str, object], tok_kwargs: Mapping[str, object], ) -> BatchFeature: processed_outputs = super()._call_hf_processor( prompt, mm_data, mm_kwargs, tok_kwargs, ) hf_processor = self.info.get_hf_processor(**mm_kwargs) image_processor = hf_processor.image_processor # HF processor pops the `num_patches` kwarg, which is needed by vLLM if (images := mm_data.get("images")) is not None: parsed_images = ( self._get_data_parser() .parse_mm_data({"image": images}) .get_items("image", ImageProcessorItems) ) image_sizes = [ parsed_images.get_image_size(i) for i in range(len(parsed_images)) ] num_patches = [ self.info.get_num_patches( image_width=image_size.width, image_height=image_size.height, size=image_processor.size, min_patches=image_processor.min_patches, max_patches=image_processor.max_patches, ) for image_size in image_sizes ] processed_outputs["num_patches"] = torch.tensor(num_patches) return processed_outputs def _get_mm_fields_config( self, hf_inputs: BatchFeature, hf_processor_mm_kwargs: Mapping[str, object], ) -> Mapping[str, MultiModalFieldConfig]: num_patches = hf_inputs.get("num_patches", torch.empty(0)) return dict( pixel_values=MultiModalFieldConfig.flat_from_sizes("image", num_patches), num_patches=MultiModalFieldConfig.batched("image"), image_embeds=MultiModalFieldConfig.batched("image"), ) def _get_prompt_updates( self, mm_items: MultiModalDataItems, hf_processor_mm_kwargs: Mapping[str, object], out_mm_kwargs: MultiModalKwargsItems, ) -> Sequence[PromptUpdate]: hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs) image_token = hf_processor.image_token img_patch_token = hf_processor.img_patch_token image_processor = hf_processor.image_processor def get_replacement(item_idx: int): images = mm_items.get_items("image", ImageProcessorItems) image_size: ImageSize = images.get_image_size(item_idx) num_patches = self.info.get_num_patches( image_width=image_size.width, image_height=image_size.height, size=image_processor.size, min_patches=image_processor.min_patches, max_patches=image_processor.max_patches, ) repl = hf_processor._prompt_split_image(num_patches=num_patches) return PromptUpdateDetails.select_text(repl, img_patch_token) return [ PromptReplacement( modality="image", target=image_token, replacement=get_replacement, ) ] def _get_num_hidden_layers(hf_config: AyaVisionConfig) -> int: feature_layers = hf_config.vision_feature_layer num_hidden_layers = hf_config.vision_config.num_hidden_layers # If we have one feature layer, initialize up to that layer if isinstance(feature_layers, int): return _get_layer_index(feature_layers, num_hidden_layers) # If we have multiple feature layers, initialize up to the deepest m elif isinstance(feature_layers, (list, tuple)): return max(_get_layer_index(idx, num_hidden_layers) for idx in feature_layers) raise TypeError( f"vision_layer_feature type: {type(feature_layers)} is not supported" ) def _get_layer_index(feature_layer_index: int, num_hidden_layers: int) -> int: if feature_layer_index < 0: return num_hidden_layers + feature_layer_index + 1 return feature_layer_index @MULTIMODAL_REGISTRY.register_processor( AyaVisionMultiModalProcessor, info=AyaVisionProcessingInfo, dummy_inputs=AyaVisionDummyInputsBuilder, ) class AyaVisionForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP): merge_by_field_config = True hf_to_vllm_mapper = WeightsMapper( orig_to_new_prefix={ # mapping for new names in checkpoint saved after transformers v4.52 "model.language_model.": "language_model.model.", "model.vision_tower.": "vision_tower.", "model.multi_modal_projector.": "multi_modal_projector.", "lm_head.": "language_model.lm_head.", } ) @classmethod def get_placeholder_str(cls, modality: str, i: int) -> str | None: if modality.startswith("image"): return "" raise ValueError("Only image modality is supported") def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config: AyaVisionConfig = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config multimodal_config = vllm_config.model_config.multimodal_config num_hidden_layers = _get_num_hidden_layers(config) self.config = config self.quant_config = quant_config self.multimodal_config = multimodal_config self.vision_tower = SiglipVisionModel( config.vision_config, quant_config, num_hidden_layers_override=num_hidden_layers, prefix=maybe_prefix(prefix, "vision_model"), ) self.vocab_size = config.text_config.vocab_size self.multi_modal_projector = AyaVisionMultiModalProjector(config) self.language_model = init_vllm_registered_model( vllm_config=vllm_config, hf_config=config.text_config, prefix=maybe_prefix(prefix, "model"), # Cohere2ForCausalLM and CohereForCausalLM are the same on vllm architectures=["Cohere2ForCausalLM"], ) @property def dtype(self): return next(self.parameters()).dtype def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader(self) return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper) def _image_pixels_to_features( self, vision_tower: SiglipVisionModel, pixel_values: torch.Tensor, ) -> torch.Tensor | tuple[torch.Tensor, ...]: return vision_tower( pixel_values.to(dtype=vision_tower.dtype), feature_select_strategy=self.config.vision_feature_select_strategy, ) def _process_image_input( self, image_input: AyaVisionImagePixelInputs, **kwargs ) -> list[torch.Tensor]: assert self.vision_tower is not None pixel_values = image_input["pixel_values"] num_patches = image_input["num_patches"] image_features = self._image_pixels_to_features( self.vision_tower, pixel_values=pixel_values ) image_embeds = self.multi_modal_projector(image_features) return [e.flatten(0, 2) for e in image_embeds.split(num_patches.tolist())] def _parse_and_validate_image_input( self, **kwargs: object ) -> AyaVisionImagePixelInputs | None: pixel_values = kwargs.pop("pixel_values", None) num_patches = kwargs.pop("num_patches", None) image_embeds = kwargs.pop("image_embeds", None) assert image_embeds is None, "Aya Vision does not support image_embeds." if pixel_values is None: return None return AyaVisionImagePixelInputs( type="pixel_values", pixel_values=pixel_values, num_patches=num_patches, resolve_bindings={ "h": self.config.vision_config.image_size, "w": self.config.vision_config.image_size, }, ) def get_language_model(self) -> torch.nn.Module: return self.language_model def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings: image_input = self._parse_and_validate_image_input(**kwargs) if image_input is None: return [] return self._process_image_input(image_input, **kwargs) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, **kwargs: object, ) -> torch.Tensor | IntermediateTensors: if intermediate_tensors is not None: inputs_embeds = None hidden_states = self.language_model.model( input_ids=input_ids, positions=positions, intermediate_tensors=intermediate_tensors, inputs_embeds=inputs_embeds, ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: return self.language_model.compute_logits(hidden_states)