# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from collections.abc import Iterable, Mapping import torch import torch.nn as nn from transformers import BatchFeature from vllm.config import ModelConfig, VllmConfig from vllm.inputs import TokensPrompt from vllm.logger import init_logger from vllm.model_executor.layers.linear import ColumnParallelLinear, RowParallelLinear from vllm.model_executor.layers.pooler import DispatchPooler, Pooler from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.sequence import IntermediateTensors from .interfaces import SupportsCrossEncoding, SupportsMultiModal, SupportsScoreTemplate from .qwen2_vl import ( Qwen2VLDummyInputsBuilder, Qwen2VLForConditionalGeneration, Qwen2VLMultiModalProcessor, Qwen2VLProcessingInfo, ) from .utils import AutoWeightsLoader, WeightsMapper, maybe_prefix logger = init_logger(__name__) class JinaVLScorer(nn.Module): def __init__(self, model_config: "ModelConfig"): super().__init__() config = model_config.hf_config.get_text_config() head_dtype = model_config.head_dtype self.dense = ColumnParallelLinear( config.hidden_size, config.hidden_size, params_dtype=head_dtype, bias=True ) self.out_proj = RowParallelLinear( config.hidden_size, config.num_labels, params_dtype=head_dtype, bias=True ) def forward(self, x, **kwargs): x, _ = self.dense(x) x = torch.relu(x) x, _ = self.out_proj(x) return x class JinaVLMultiModalProcessor(Qwen2VLMultiModalProcessor): def _call_hf_processor( self, prompt: str, mm_data: Mapping[str, object], mm_kwargs: Mapping[str, object], tok_kwargs: Mapping[str, object], ) -> BatchFeature: # NOTE: We should reverse the order of the mm_data because the # query prompt is placed after the document prompt in the score # template for JinaVLForRanking model, but in mm_data they are # stored in the opposite order (query first, then document). for _, value in mm_data.items(): value.reverse() return super()._call_hf_processor(prompt, mm_data, mm_kwargs, tok_kwargs) @MULTIMODAL_REGISTRY.register_processor( JinaVLMultiModalProcessor, info=Qwen2VLProcessingInfo, dummy_inputs=Qwen2VLDummyInputsBuilder, ) class JinaVLForSequenceClassification( Qwen2VLForConditionalGeneration, SupportsCrossEncoding, SupportsMultiModal, SupportsScoreTemplate, ): is_pooling_model = True weight_mapper = WeightsMapper( orig_to_new_prefix={ "score.0.": "score.dense.", "score.2.": "score.out_proj.", # mapping for new names in checkpoint saved after transformers v4.52 "model.language_model.": "language_model.model.", "visual.": "visual.", # mapping for original checkpoint "lm_head.": "language_model.lm_head.", "model.": "language_model.model.", } ) def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "qwen2_vl") ) pooler_config = vllm_config.model_config.pooler_config assert pooler_config is not None self.score = JinaVLScorer(vllm_config.model_config) self.pooler = DispatchPooler( { "token_classify": Pooler.for_token_classify( pooler_config, classifier=self.score ), "classify": Pooler.for_classify( pooler_config, classifier=self.score, act_fn="classify" ), "score": Pooler.for_classify( pooler_config, classifier=self.score, act_fn="score" ), } ) @classmethod def get_placeholder_str(cls, modality: str, i: int) -> str | None: if modality.startswith("image"): return "<|vision_start|><|image_pad|><|vision_end|>" raise ValueError("Only image modality is supported") @classmethod def get_score_template(cls, query: str, document: str) -> str | None: return f"**Document**:\n{document}\n**Query**:\n{query}" @classmethod def post_process_tokens(cls, prompt: TokensPrompt) -> None: # add score target token at the end of prompt tokens prompt["prompt_token_ids"].append(100) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, **kwargs: object, ) -> torch.Tensor: hidden_states = super().forward( input_ids=input_ids, positions=positions, intermediate_tensors=intermediate_tensors, inputs_embeds=inputs_embeds, **kwargs, ) return hidden_states def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]): loader = AutoWeightsLoader(self) return loader.load_weights(weights, mapper=self.weight_mapper)