# CacheFlow ## Build from source ```bash pip install -r requirements.txt pip install -e . # This may take several minutes. ``` ## Test simple server ```bash # Single-GPU inference. python examples/simple_server.py # --model # Multi-GPU inference (e.g., 2 GPUs). ray start --head python examples/simple_server.py -tp 2 # --model ``` The detailed arguments for `simple_server.py` can be found by: ```bash python examples/simple_server.py --help ``` ## FastAPI server To start the server: ```bash ray start --head python -m cacheflow.entrypoints.fastapi_server # --model ``` To test the server: ```bash python test_cli_client.py ``` ## Gradio web server Install the following additional dependencies: ```bash pip install gradio ``` Start the server: ```bash python -m cacheflow.http_frontend.fastapi_frontend # At another terminal python -m cacheflow.http_frontend.gradio_webserver ``` ## Load LLaMA weights Since LLaMA weight is not fully public, we cannot directly download the LLaMA weights from huggingface. Therefore, you need to follow the following process to load the LLaMA weights. 1. Converting LLaMA weights to huggingface format with [this script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py). ```bash python src/transformers/models/llama/convert_llama_weights_to_hf.py \ --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path/llama-7b ``` 2. For all the commands above, specify the model with `--model /output/path/llama-7b` to load the model. For example: ```bash python simple_server.py --model /output/path/llama-7b python -m cacheflow.http_frontend.fastapi_frontend --model /output/path/llama-7b ```