# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from typing import Optional import flashinfer import pytest import torch from vllm.platforms import current_platform if not current_platform.is_device_capability(100): pytest.skip("This TRTLLM kernel requires NVIDIA Blackwell.", allow_module_level=True) FLOAT32_BYTES = torch.finfo(torch.float).bits // 8 # KV Cache Layout for TRT-LLM # kv_cache_shape = (num_blocks, 2, num_kv_heads, page_size, head_dim) NUM_HEADS = [(64, 8), (16, 16), (40, 8), (32, 8)] HEAD_SIZES = [128] BLOCK_SIZES = [16, 32] DTYPES = [torch.float16, torch.bfloat16] NUM_BLOCKS = 32768 # Large enough to test overflow in index calculation. SOFT_CAPS = [None, 30.0, 50.0] def to_float8(x, dtype=torch.float8_e4m3fn): finfo = torch.finfo(dtype) min_val, max_val = x.aminmax() amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12) scale = finfo.max / amax * 0.1 x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max) return x_scl_sat.to(dtype), scale.float().reciprocal() @pytest.mark.parametrize("kv_lens", [[1328, 18, 463], [1, 54, 293, 70]]) @pytest.mark.parametrize("num_heads", NUM_HEADS) @pytest.mark.parametrize("head_size", HEAD_SIZES) @pytest.mark.parametrize("block_size", BLOCK_SIZES) @pytest.mark.parametrize("kv_layout", ["HND"]) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("soft_cap", SOFT_CAPS) @torch.inference_mode def test_flashinfer_trtllm_decode_with_baseline( kv_lens: list[int], num_heads: tuple[int, int], head_size: int, dtype: torch.dtype, block_size: int, soft_cap: Optional[float], kv_layout: str, ) -> None: torch.set_default_device("cuda") current_platform.seed_everything(0) num_seqs = len(kv_lens) num_query_heads = num_heads[0] num_kv_heads = num_heads[1] assert num_query_heads % num_kv_heads == 0 max_kv_len = max(kv_lens) scale = head_size**-0.5 query = torch.randn(num_seqs, num_query_heads, head_size, dtype=dtype) kv_cache_shape = None if kv_layout == "NHD": kv_cache_shape = (NUM_BLOCKS, 2, block_size, num_kv_heads, head_size) elif kv_layout == "HND": kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, block_size, head_size) else: raise ValueError(f"Invalid kv_layout: {kv_layout}") key_value_cache = torch.randn(kv_cache_shape, dtype=dtype) max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size block_tables = torch.randint(0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32) k_scale = v_scale = 1.0 kv_indptr = [0] kv_indices = [] kv_last_page_lens = [] for i in range(num_seqs): seq_len = kv_lens[i] assert seq_len > 0 num_blocks = (seq_len + block_size - 1) // block_size kv_indices.extend(block_tables[i, :num_blocks]) kv_indptr.append(kv_indptr[-1] + num_blocks) kv_last_page_len = seq_len % block_size if kv_last_page_len == 0: kv_last_page_len = block_size kv_last_page_lens.append(kv_last_page_len) kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32) kv_indices = torch.tensor(kv_indices, dtype=torch.int32) kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32) workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.int8) wrapper = flashinfer.\ BatchDecodeWithPagedKVCacheWrapper(workspace_buffer, kv_layout, use_tensor_cores=( (num_query_heads//num_kv_heads) > 4) ) wrapper.plan(kv_indptr, kv_indices, kv_last_page_lens, num_query_heads, num_kv_heads, head_size, block_size, "NONE", q_data_type=dtype, kv_data_type=dtype, logits_soft_cap=soft_cap) output = torch.empty(query.shape, dtype=dtype) wrapper.run(query, key_value_cache, scale, out=output) # TRTLLM Decode max_kv_len = max(kv_lens) kv_lens_tensor = torch.tensor(kv_lens, dtype=torch.int, device=query.device) output_trtllm = torch.empty(query.shape, dtype=dtype) flashinfer.decode.trtllm_batch_decode_with_kv_cache( query.contiguous(), key_value_cache, workspace_buffer, block_tables, kv_lens_tensor, max_kv_len, bmm1_scale=k_scale * scale, bmm2_scale=v_scale, out=output_trtllm, ) torch.testing.assert_close(output, output_trtllm, atol=1e-2, rtol=1e-2), \ f"{torch.max(torch.abs(output - output_trtllm))}"