# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import hashlib from dataclasses import field from typing import TYPE_CHECKING, Any, Literal, Optional, Union import torch from pydantic import TypeAdapter, model_validator from pydantic.dataclasses import dataclass from torch.distributed import ProcessGroup, ReduceOp from typing_extensions import Self import vllm.envs as envs from vllm.config.utils import config from vllm.logger import init_logger from vllm.platforms import current_platform from vllm.utils import cuda_device_count_stateless, get_open_ports_list if TYPE_CHECKING: from ray.runtime_env import RuntimeEnv from ray.util.placement_group import PlacementGroup from vllm.executor.executor_base import ExecutorBase else: RuntimeEnv = Any PlacementGroup = Any ExecutorBase = Any logger = init_logger(__name__) DistributedExecutorBackend = Literal["ray", "mp", "uni", "external_launcher"] @config @dataclass class EPLBConfig: """Configuration for Expert Parallel Load Balancing (EP).""" window_size: int = 1000 """Window size for expert load recording.""" step_interval: int = 3000 """ Interval for rearranging experts in expert parallelism. Note that if this is greater than the EPLB window size, only the metrics of the last `lb_window_size` steps will be used for rearranging experts. """ num_redundant_experts: int = 0 """Number of redundant experts to use for expert parallelism.""" log_balancedness: bool = False """ Log the balancedness each step of expert parallelism. This is turned off by default since it will cause communication overhead. """ @classmethod def from_cli(cls, cli_value: str) -> "EPLBConfig": """Parse the CLI value for the compilation config. -O1, -O2, -O3, etc. is handled in FlexibleArgumentParser. """ return TypeAdapter(EPLBConfig).validate_json(cli_value) @config @dataclass class ParallelConfig: """Configuration for the distributed execution.""" pipeline_parallel_size: int = 1 """Number of pipeline parallel groups.""" tensor_parallel_size: int = 1 """Number of tensor parallel groups.""" data_parallel_size: int = 1 """Number of data parallel groups. MoE layers will be sharded according to the product of the tensor parallel size and data parallel size.""" data_parallel_size_local: int = 1 """Number of local data parallel groups.""" data_parallel_rank: int = 0 """Rank of the data parallel group.""" data_parallel_rank_local: Optional[int] = None """Local rank of the data parallel group, set only in SPMD mode.""" data_parallel_master_ip: str = "127.0.0.1" """IP of the data parallel master.""" data_parallel_rpc_port: int = 29550 """Port for data parallel messaging.""" data_parallel_master_port: int = 29500 """Port of the data parallel master.""" data_parallel_backend: str = "mp" """Backend to use for data parallel, either "mp" or "ray".""" data_parallel_external_lb: bool = False """Whether to use "external" DP LB mode. Applies only to online serving and when data_parallel_size > 0. This is useful for a "one-pod-per-rank" wide-EP setup in Kuberentes. Set implicitly when --data-parallel-rank is provided explicitly to vllm serve.""" data_parallel_hybrid_lb: bool = False """Whether to use "hybrid" DP LB mode. Applies only to online serving and when data_parallel_size > 0. Enables running an AsyncLLM and API server on a "per-node" basis where vLLM load balances between local data parallel ranks, but an external LB balances between vLLM nodes/replicas. Set explicitly in conjunction with --data-parallel-start-rank.""" enable_expert_parallel: bool = False """Use expert parallelism instead of tensor parallelism for MoE layers.""" enable_eplb: bool = False """Enable expert parallelism load balancing for MoE layers.""" eplb_config: EPLBConfig = field(default_factory=EPLBConfig) """Expert parallelism configuration.""" num_redundant_experts: Optional[int] = None """`num_redundant_experts` is deprecated and has been replaced with `eplb_config.num_redundant_experts`. This will be removed in v0.12.0. Please use `eplb_config.num_redundant_experts` instead.""" eplb_window_size: Optional[int] = None """`eplb_window_size` is deprecated and has been replaced with `eplb_config.window_size`. This will be removed in v0.12.0. Please use `eplb_config.window_size` instead.""" eplb_step_interval: Optional[int] = None """`eplb_step_interval` is deprecated and has been replaced with `eplb_config.step_interval`. This will be removed in v0.12.0. Please use `eplb_config.step_interval` instead.""" eplb_log_balancedness: Optional[bool] = None """`eplb_log_balancedness` is deprecated and has been replaced with `eplb_config.log_balancedness`. This will be removed in v0.12.0. Please use `eplb_config.log_balancedness` instead.""" max_parallel_loading_workers: Optional[int] = None """Maximum number of parallel loading workers when loading model sequentially in multiple batches. To avoid RAM OOM when using tensor parallel and large models.""" disable_custom_all_reduce: bool = False """Disable the custom all-reduce kernel and fall back to NCCL.""" ray_workers_use_nsight: bool = False """Whether to profile Ray workers with nsight, see https://docs.ray.io/en/latest/ray-observability/user-guides/profiling.html#profiling-nsight-profiler.""" ray_runtime_env: Optional[RuntimeEnv] = None """Ray runtime environment to pass to distributed workers.""" placement_group: Optional[PlacementGroup] = None """ray distributed model workers placement group.""" distributed_executor_backend: Optional[Union[str, DistributedExecutorBackend, type[ExecutorBase]]] = None """Backend to use for distributed model workers, either "ray" or "mp" (multiprocessing). If the product of pipeline_parallel_size and tensor_parallel_size is less than or equal to the number of GPUs available, "mp" will be used to keep processing on a single host. Otherwise, this will default to "ray" if Ray is installed and fail otherwise. Note that tpu only support Ray for distributed inference.""" worker_cls: str = "auto" """The full name of the worker class to use. If "auto", the worker class will be determined based on the platform.""" sd_worker_cls: str = "auto" """The full name of the worker class to use for speculative decoding. If "auto", the worker class will be determined based on the platform.""" worker_extension_cls: str = "" """The full name of the worker extension class to use. The worker extension class is dynamically inherited by the worker class. This is used to inject new attributes and methods to the worker class for use in collective_rpc calls.""" world_size: int = field(init=False) """world_size is TPxPP, it affects the number of workers we create.""" rank: int = 0 """Global rank in distributed setup.""" _data_parallel_master_port_list: list[int] = field(default_factory=list) """List of open port auto-queried for data parallel messaging. Set to be private as it's not intended to be configured by users. """ @property def world_size_across_dp(self) -> int: """world_size_across_dp is TPxPPxDP, it is the size of the world including data parallelism.""" return self.world_size * self.data_parallel_size def get_next_dp_init_port(self) -> int: """ We might need to initialize process groups in multiple processes that is related to data parallelism, e.g. both in the worker and in the engine, which can live in different processes. To avoid port conflicts, we pop a new port from the prepared port list each time we need to initialize a new process group related to data parallelism. """ if self._data_parallel_master_port_list: answer = self._data_parallel_master_port_list.pop() else: answer = self.data_parallel_master_port self.data_parallel_master_port += 1 return answer def stateless_init_dp_group(self) -> ProcessGroup: # NOTE: In high-concurrency scenarios multiple processes # can pick the same (currently free) port through a race # condition when calling `get_open_port()`. When the first # process binds the port the others will subsequently fail # with `torch.distributed.DistNetworkError: EADDRINUSE`. # To make the initialization more robust we retry a few times # with a fresh port whenever this specific error is observed. from torch.distributed import DistNetworkError from vllm.distributed.utils import ( stateless_init_torch_distributed_process_group) max_retries = 5 last_exc: Optional[Exception] = None for _ in range(max_retries): try: # use gloo since the engine process might not have cuda device return stateless_init_torch_distributed_process_group( self.data_parallel_master_ip, self.get_next_dp_init_port(), self.data_parallel_rank, self.data_parallel_size, backend="gloo") except DistNetworkError as e: # We only want to retry when the root cause is EADDRINUSE. if "EADDRINUSE" in str(e): logger.warning( "Address already in use. Retrying with a new port.") last_exc = e continue # try again with a new port raise e # If we get here all retries have failed. assert last_exc is not None raise last_exc @staticmethod def has_unfinished_dp(dp_group: ProcessGroup, has_unfinished: bool) -> bool: tensor = torch.tensor([has_unfinished], dtype=torch.int32, device="cpu") # dp rank 0: has_unfinished_seqs=True # dp rank 1: has_unfinished_seqs=False # aggregated: has_unfinished_seqs=True # so this is an OR operation, i.e. MAX in integers torch.distributed.all_reduce(tensor, op=ReduceOp.MAX, group=dp_group) aggregated_has_unfinished = bool(tensor.item()) return aggregated_has_unfinished @staticmethod def sync_kv_cache_memory_size(dp_group: ProcessGroup, kv_cache_memory: int) -> int: if kv_cache_memory == -1: kv_cache_memory = torch.iinfo(torch.int64).max tensor = torch.tensor([kv_cache_memory], dtype=torch.int64, device="cpu") # we cannot use broadcast for stateless dp group since it depends # on global rank torch.distributed.all_reduce(tensor, op=ReduceOp.MIN, group=dp_group) return tensor.item() def compute_hash(self): """ Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states. """ factors: list[Any] = [] factors.append(self.pipeline_parallel_size) factors.append(self.tensor_parallel_size) factors.append(self.enable_expert_parallel) factors.append(self.data_parallel_size) factors.append(envs.VLLM_ALL2ALL_BACKEND) return hashlib.sha256(str(factors).encode()).hexdigest() def __post_init__(self) -> None: # Forward deprecated fields to their new location if self.num_redundant_experts is not None: self.eplb_config.num_redundant_experts = ( self.num_redundant_experts) logger.warning_once( "num_redundant_experts is deprecated and has been replaced " "with eplb_config.num_redundant_experts. This will be removed " "in v0.12.0. Changing this field after initialization will " "have no effect.") if self.eplb_window_size is not None: self.eplb_config.window_size = self.eplb_window_size logger.warning_once( "eplb_window_size is deprecated and has been replaced " "with eplb_config.window_size. This will be removed " "in v0.12.0. Changing this field after initialization will " "have no effect.") if self.eplb_step_interval is not None: self.eplb_config.step_interval = self.eplb_step_interval logger.warning_once( "eplb_step_interval is deprecated and has been replaced " "with eplb_config.step_interval. This will be removed " "in v0.12.0. Changing this field after initialization will " "have no effect.") if self.eplb_log_balancedness is not None: self.eplb_config.log_balancedness = self.eplb_log_balancedness logger.warning_once( "eplb_log_balancedness is deprecated and has been replaced " "with eplb_config.log_balancedness. This will be removed " "in v0.12.0. Changing this field after initialization will " "have no effect.") # Continue with the rest of the initialization self.world_size = self.pipeline_parallel_size * \ self.tensor_parallel_size if self.data_parallel_size_local > self.data_parallel_size: raise ValueError( f"data_parallel_size_local ({self.data_parallel_size_local}) " f"must be <= data_parallel_size ({self.data_parallel_size})") if self.data_parallel_size > 1 or self.data_parallel_size_local == 0: # Data parallel was specified in the engine args. if not self._data_parallel_master_port_list: self._data_parallel_master_port_list = get_open_ports_list(5) self.data_parallel_master_port = \ self._data_parallel_master_port_list.pop() if not (0 <= self.data_parallel_rank < self.data_parallel_size): raise ValueError( f"data_parallel_rank ({self.data_parallel_rank})" f" must be in the range [0, {self.data_parallel_size})") else: # Otherwise fall back to env vars (e.g. for offline SPMD case). self.data_parallel_size = envs.VLLM_DP_SIZE self.data_parallel_rank = envs.VLLM_DP_RANK self.data_parallel_rank_local = envs.VLLM_DP_RANK_LOCAL self.data_parallel_master_ip = envs.VLLM_DP_MASTER_IP self.data_parallel_master_port = envs.VLLM_DP_MASTER_PORT if self.data_parallel_external_lb: raise ValueError("data_parallel_external_lb can only " "be set when data_parallel_size > 1") if self.distributed_executor_backend == "external_launcher": import os os.environ["VLLM_ENABLE_V1_MULTIPROCESSING"] = "0" logger.info("Disabling V1 multiprocessing for external launcher.") if self.enable_eplb: if not current_platform.is_cuda(): raise ValueError( "Expert parallelism load balancing is only supported on " "CUDA devices now.") if self.eplb_config.num_redundant_experts < 0: raise ValueError( "num_redundant_experts must be non-negative, but got " f"{self.eplb_config.num_redundant_experts}.") if not self.enable_expert_parallel: raise ValueError( "enable_expert_parallel must be True to use EPLB.") if self.tensor_parallel_size * self.data_parallel_size <= 1: raise ValueError( "EPLB requires tensor_parallel_size or data_parallel_size " f"to be greater than 1, but got " f"TP={self.tensor_parallel_size},DP={self.data_parallel_size}." ) else: if self.eplb_config.num_redundant_experts != 0: raise ValueError( "num_redundant_experts should be used with EPLB." f"{self.eplb_config.num_redundant_experts}.") if self.distributed_executor_backend is None and self.world_size > 1: # We use multiprocessing by default if world_size fits on the # current node and we aren't in a ray placement group. from vllm.executor import ray_utils backend: DistributedExecutorBackend = "mp" ray_found = ray_utils.ray_is_available() if current_platform.is_neuron(): # neuron uses single process to control multiple devices backend = "uni" elif current_platform.is_tpu() and envs.VLLM_XLA_USE_SPMD: backend = "uni" elif (current_platform.is_cuda() and cuda_device_count_stateless() < self.world_size): if not ray_found: raise ValueError("Unable to load Ray: " f"{ray_utils.ray_import_err}. Ray is " "required for multi-node inference, " "please install Ray with `pip install " "ray`.") backend = "ray" elif self.data_parallel_backend == "ray": logger.info("Using ray distributed inference because " "data_parallel_backend is ray") backend = "ray" elif ray_found: if self.placement_group: backend = "ray" else: from ray import is_initialized as ray_is_initialized if ray_is_initialized(): from ray.util import get_current_placement_group if get_current_placement_group(): backend = "ray" self.distributed_executor_backend = backend logger.debug("Defaulting to use %s for distributed inference", backend) if self.distributed_executor_backend is None and self.world_size == 1: self.distributed_executor_backend = "uni" @property def use_ray(self) -> bool: return self.distributed_executor_backend == "ray" or ( isinstance(self.distributed_executor_backend, type) and getattr(self.distributed_executor_backend, "uses_ray", False)) @model_validator(mode='after') def _verify_args(self) -> Self: # Lazy import to avoid circular import from vllm.executor.executor_base import ExecutorBase from vllm.platforms import current_platform if self.distributed_executor_backend is not None and not isinstance( self.distributed_executor_backend, str) and not (isinstance( self.distributed_executor_backend, type) and issubclass( self.distributed_executor_backend, ExecutorBase)): raise ValueError( "Unrecognized distributed executor backend " f"{self.distributed_executor_backend}. Supported " "values are 'ray', 'mp' 'uni', 'external_launcher', " " custom ExecutorBase subclass or its import path.") if self.use_ray: from vllm.executor import ray_utils ray_utils.assert_ray_available() if not current_platform.use_custom_allreduce(): self.disable_custom_all_reduce = True logger.debug( "Disabled the custom all-reduce kernel because it is not " "supported on current platform.") if self.ray_workers_use_nsight and not self.use_ray: raise ValueError("Unable to use nsight profiling unless workers " "run with Ray.") return self