# --8<-- [start:installation] vLLM has experimental support for s390x architecture on IBM Z platform. For now, users must build from source to natively run on IBM Z platform. Currently the CPU implementation for s390x architecture supports FP32 datatype only. !!! warning There are no pre-built wheels or images for this device, so you must build vLLM from source. # --8<-- [end:installation] # --8<-- [start:requirements] - OS: `Linux` - SDK: `gcc/g++ >= 12.3.0` or later with Command Line Tools - Instruction Set Architecture (ISA): VXE support is required. Works with Z14 and above. - Build install python packages: `pyarrow`, `torch` and `torchvision` # --8<-- [end:requirements] # --8<-- [start:set-up-using-python] # --8<-- [end:set-up-using-python] # --8<-- [start:pre-built-wheels] # --8<-- [end:pre-built-wheels] # --8<-- [start:build-wheel-from-source] Install the following packages from the package manager before building the vLLM. For example on RHEL 9.4: ```bash dnf install -y \ which procps findutils tar vim git gcc g++ make patch make cython zlib-devel \ libjpeg-turbo-devel libtiff-devel libpng-devel libwebp-devel freetype-devel harfbuzz-devel \ openssl-devel openblas openblas-devel wget autoconf automake libtool cmake numactl-devel ``` Install rust>=1.80 which is needed for `outlines-core` and `uvloop` python packages installation. ```bash curl https://sh.rustup.rs -sSf | sh -s -- -y && \ . "$HOME/.cargo/env" ``` Execute the following commands to build and install vLLM from source. !!! tip Please build the following dependencies, `torchvision`, `pyarrow` from source before building vLLM. ```bash sed -i '/^torch/d' requirements/build.txt # remove torch from requirements/build.txt since we use nightly builds uv pip install -v \ --torch-backend auto \ -r requirements/build.txt \ -r requirements/cpu.txt \ VLLM_TARGET_DEVICE=cpu python setup.py bdist_wheel && \ uv pip install dist/*.whl ``` ??? console "pip" ```bash sed -i '/^torch/d' requirements/build.txt # remove torch from requirements/build.txt since we use nightly builds pip install -v \ --extra-index-url https://download.pytorch.org/whl/nightly/cpu \ -r requirements/build.txt \ -r requirements/cpu.txt \ VLLM_TARGET_DEVICE=cpu python setup.py bdist_wheel && \ pip install dist/*.whl ``` # --8<-- [end:build-wheel-from-source] # --8<-- [start:pre-built-images] # --8<-- [end:pre-built-images] # --8<-- [start:build-image-from-source] ```bash docker build -f docker/Dockerfile.s390x \ --tag vllm-cpu-env . # Launch OpenAI server docker run --rm \ --privileged true \ --shm-size 4g \ -p 8000:8000 \ -e VLLM_CPU_KVCACHE_SPACE= \ -e VLLM_CPU_OMP_THREADS_BIND= \ vllm-cpu-env \ --model meta-llama/Llama-3.2-1B-Instruct \ --dtype float \ other vLLM OpenAI server arguments ``` !!! tip An alternative of `--privileged true` is `--cap-add SYS_NICE --security-opt seccomp=unconfined`. # --8<-- [end:build-image-from-source] # --8<-- [start:extra-information] # --8<-- [end:extra-information]