# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """ This file demonstrates the example usage of structured outputs in vLLM. It shows how to apply different constraints such as choice, regex, json schema, and grammar to produce structured and formatted results based on specific prompts. """ from enum import Enum from pydantic import BaseModel from vllm import LLM, SamplingParams from vllm.sampling_params import StructuredOutputsParams MAX_TOKENS = 50 # Structured outputs by Choice (list of possible options) structured_outputs_params_choice = StructuredOutputsParams( choice=["Positive", "Negative"] ) sampling_params_choice = SamplingParams( structured_outputs=structured_outputs_params_choice ) prompt_choice = "Classify this sentiment: vLLM is wonderful!" # Structured outputs by Regex structured_outputs_params_regex = StructuredOutputsParams(regex=r"\w+@\w+\.com\n") sampling_params_regex = SamplingParams( structured_outputs=structured_outputs_params_regex, stop=["\n"], max_tokens=MAX_TOKENS, ) prompt_regex = ( "Generate an email address for Alan Turing, who works in Enigma." "End in .com and new line. Example result:" "alan.turing@enigma.com\n" ) # Structured outputs by JSON using Pydantic schema class CarType(str, Enum): sedan = "sedan" suv = "SUV" truck = "Truck" coupe = "Coupe" class CarDescription(BaseModel): brand: str model: str car_type: CarType json_schema = CarDescription.model_json_schema() structured_outputs_params_json = StructuredOutputsParams(json=json_schema) sampling_params_json = SamplingParams( structured_outputs=structured_outputs_params_json, max_tokens=MAX_TOKENS ) prompt_json = ( "Generate a JSON with the brand, model and car_type of " "the most iconic car from the 90's" ) # Structured outputs by Grammar simplified_sql_grammar = """ root ::= select_statement select_statement ::= "SELECT " column " from " table " where " condition column ::= "col_1 " | "col_2 " table ::= "table_1 " | "table_2 " condition ::= column "= " number number ::= "1 " | "2 " """ structured_outputs_params_grammar = StructuredOutputsParams( grammar=simplified_sql_grammar ) sampling_params_grammar = SamplingParams( structured_outputs=structured_outputs_params_grammar, max_tokens=MAX_TOKENS, ) prompt_grammar = ( "Generate an SQL query to show the 'username' and 'email' from the 'users' table." ) def format_output(title: str, output: str): print(f"{'-' * 50}\n{title}: {output}\n{'-' * 50}") def generate_output(prompt: str, sampling_params: SamplingParams, llm: LLM): outputs = llm.generate(prompt, sampling_params=sampling_params) return outputs[0].outputs[0].text def main(): llm = LLM(model="Qwen/Qwen2.5-3B-Instruct", max_model_len=100) choice_output = generate_output(prompt_choice, sampling_params_choice, llm) format_output("Structured outputs by Choice", choice_output) regex_output = generate_output(prompt_regex, sampling_params_regex, llm) format_output("Structured outputs by Regex", regex_output) json_output = generate_output(prompt_json, sampling_params_json, llm) format_output("Structured outputs by JSON", json_output) grammar_output = generate_output(prompt_grammar, sampling_params_grammar, llm) format_output("Structured outputs by Grammar", grammar_output) if __name__ == "__main__": main()