# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import pytest import torch from tests.kernels.moe.utils import make_test_weights from tests.kernels.quantization.nvfp4_utils import (FLOAT4_E2M1_MAX, FLOAT8_E4M3_MAX, dequantize_nvfp4_to_dtype) from tests.kernels.utils import torch_moe from vllm import _custom_ops as ops from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import ( FlashInferExperts, is_valid_flashinfer_cutlass_fused_moe) from vllm.model_executor.layers.fused_moe.fused_moe import fused_topk from vllm.model_executor.layers.fused_moe.modular_kernel import ( FusedMoEModularKernel) from vllm.model_executor.layers.fused_moe.prepare_finalize import ( MoEPrepareAndFinalizeNoEP) from vllm.platforms import current_platform from vllm.utils.flashinfer import has_flashinfer_cutlass_fused_moe if not has_flashinfer_cutlass_fused_moe( ) or not current_platform.has_device_capability(100): pytest.skip("Requires flashinfer_cutlass_fused_moe and nvfp4 support", allow_module_level=True) MNK_FACTORS = [ (2, 1024, 1024), (2, 1024, 1536), (2, 3072, 1024), (2, 3072, 1536), (64, 1024, 1024), (64, 1024, 1536), (64, 3072, 1024), (64, 2048, 1536), (224, 1024, 1024), (224, 1024, 1536), ] @pytest.mark.parametrize("m,n,k", MNK_FACTORS) @pytest.mark.parametrize("e", [40, 64, 256]) #@pytest.mark.parametrize("e", [128, 256]) @pytest.mark.parametrize("topk", [1, 6, 8]) @pytest.mark.parametrize("dtype", [torch.half, torch.bfloat16]) @torch.inference_mode() def test_flashinfer_fp4_moe_no_graph(m: int, n: int, k: int, e: int, topk: int, dtype: torch.dtype): current_platform.seed_everything(7) with set_current_vllm_config( VllmConfig(parallel_config=ParallelConfig( pipeline_parallel_size=1))): a = torch.randn((m, k), device="cuda", dtype=dtype) / 10 quant_blocksize = 16 (_, w1_q, w1_blockscale, w1_gs), (_, w2_q, w2_blockscale, w2_gs) = make_test_weights( e, n, k, in_dtype=dtype, quant_dtype="nvfp4", block_shape=None, # use quant_blocksize? per_act_token_quant=False, ) score = torch.randn((m, e), device="cuda", dtype=dtype) topk_weights, topk_ids, _ = fused_topk(a, score, topk, renormalize=False) a1_gs = torch.ones((e, ), device="cuda", dtype=torch.float32) a2_gs = torch.ones((e, ), device="cuda", dtype=torch.float32) assert is_valid_flashinfer_cutlass_fused_moe(a, w1_q, w2_q) assert w1_gs is not None assert w2_gs is not None assert w1_blockscale is not None assert w2_blockscale is not None flashinfer_experts = FusedMoEModularKernel( MoEPrepareAndFinalizeNoEP(), FlashInferExperts( a1_gscale=a1_gs, g1_alphas=(1 / w1_gs), a2_gscale=a2_gs, g2_alphas=(1 / w2_gs), out_dtype=dtype, quant_dtype="nvfp4", )) flashinfer_output = flashinfer_experts( hidden_states=a, w1=w1_q, w1_scale=w1_blockscale, w2=w2_q, w2_scale=w2_blockscale, a1_scale=a1_gs, a2_scale=a2_gs, topk_weights=topk_weights, topk_ids=topk_ids, ) # Reference check: a_global_scale = ((FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX) / torch.amax(a.flatten(), dim=-1)).to(torch.float32) a_fp4, a_scale_interleaved = ops.scaled_fp4_quant(a, a_global_scale) _, m_k = a_fp4.shape a_in_dtype = dequantize_nvfp4_to_dtype(a_fp4, a_scale_interleaved, a_global_scale, dtype=a.dtype, device=a.device, block_size=quant_blocksize) w1_d = torch.empty((e, 2 * n, k), device="cuda", dtype=dtype) w2_d = torch.empty((e, k, n), device="cuda", dtype=dtype) for idx in range(0, e): w1_d[idx] = dequantize_nvfp4_to_dtype(w1_q[idx], w1_blockscale[idx], w1_gs[idx], dtype=dtype, device=w1_q.device, block_size=quant_blocksize) w2_d[idx] = dequantize_nvfp4_to_dtype(w2_q[idx], w2_blockscale[idx], w2_gs[idx], dtype=dtype, device=w2_q.device, block_size=quant_blocksize) torch_output = torch_moe(a_in_dtype, w1_d, w2_d, score, topk) torch.testing.assert_close(torch_output, flashinfer_output, atol=1e-1, rtol=1e-1) if __name__ == "__main__": test_flashinfer_fp4_moe_no_graph((2, 1024, 1024), 40, 1, torch.half)