# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import asyncio import time import pytest from vllm.engine.arg_utils import AsyncEngineArgs from vllm.entrypoints.openai.api_server import ( build_async_engine_client_from_engine_args, ) from vllm.inputs import TextPrompt from vllm.lora.request import LoRARequest from vllm.sampling_params import SamplingParams from vllm.utils.async_utils import merge_async_iterators MODEL_PATH = "zai-org/chatglm3-6b" LORA_RANK = 64 DEFAULT_MAX_LORAS = 4 * 3 def get_lora_requests(lora_path) -> list[LoRARequest]: lora_requests: list[LoRARequest] = [ LoRARequest(lora_name=f"{i}", lora_int_id=i, lora_path=lora_path) for i in range(1, DEFAULT_MAX_LORAS + 1) ] return lora_requests async def requests_processing_time(llm, lora_requests: list[LoRARequest]) -> float: sampling_params = SamplingParams( n=1, temperature=0.0, top_p=1.0, ignore_eos=True, max_tokens=1 ) generators = [] start = time.perf_counter() for lora_request in lora_requests: lora_int_id = lora_request.lora_int_id generator = llm.generate( prompt=TextPrompt(prompt=f"hello {lora_int_id}", multi_modal_data=None), # type: ignore sampling_params=sampling_params, lora_request=lora_request, request_id=f"test{lora_int_id}", ) generators.append(generator) all_gens = merge_async_iterators(*generators) async for i, res in all_gens: pass end = time.perf_counter() return end - start @pytest.mark.asyncio async def test_add_lora(chatglm3_lora_files): """ The add_lora function is used to preload some LoRA adapters into the engine in anticipation of future requests using these adapters. To test this functionality, we use the async engine to process some requests - We do it twice, once with add_lora() preloading and once without. We measure the request processing time in both cases and expect the time to be lesser in the case with add_lora() calls. """ lora_requests: list[LoRARequest] = get_lora_requests(chatglm3_lora_files) max_loras = len(set([lr.lora_int_id for lr in lora_requests])) # Create engine in eager-mode. Due to high max_loras, the CI can # OOM during cuda-graph capture. engine_args = AsyncEngineArgs( model=MODEL_PATH, enable_lora=True, max_loras=max_loras, max_lora_rank=LORA_RANK, max_model_len=128, gpu_memory_utilization=0.8, # avoid OOM trust_remote_code=True, enforce_eager=True, ) # split lora_requests into 3 parts part_size = len(lora_requests) // 3 dummy_run_requests = lora_requests[:part_size] warmup_run_requests = lora_requests[part_size : part_size * 2] cold_run_requests = lora_requests[part_size * 2 :] async with build_async_engine_client_from_engine_args(engine_args) as llm: # Dummy run - So any 1-time functionality like triton kernel compilation # is complete here. await requests_processing_time(llm, dummy_run_requests) # Run with warmup add_lora_tasks = [llm.add_lora(lr) for lr in warmup_run_requests] add_lora_results = await asyncio.gather(*add_lora_tasks) # Test that all all_lora calls are successful. assert all(add_lora_results) time_with_add_lora = await requests_processing_time(llm, warmup_run_requests) # Run without any warmup time_cold_start = await requests_processing_time(llm, cold_run_requests) print(f"time hot-start {time_with_add_lora} vs time cold-start {time_cold_start} ") assert time_with_add_lora < time_cold_start, ( f"time_with_add_lora={time_with_add_lora}, " f"time_cold_start={time_cold_start}" "The engine request processing time with LoRA pre-loading " "must be less than the version that does on-demand LoRA loading." )