# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import subprocess import sys import pytest import vllm import vllm.config from vllm import LLM from vllm.lora.request import LoRARequest from vllm.model_executor.model_loader.tensorizer import TensorizerConfig from ..utils import VLLM_PATH, create_new_process_for_each_test, multi_gpu_test PROMPT_TEMPLATE = """<|eot_id|><|start_header_id|>user<|end_header_id|> I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request. " ##Instruction: candidate_poll contains tables such as candidate, people. Table candidate has columns such as Candidate_ID, People_ID, Poll_Source, Date, Support_rate, Consider_rate, Oppose_rate, Unsure_rate. Candidate_ID is the primary key. Table people has columns such as People_ID, Sex, Name, Date_of_Birth, Height, Weight. People_ID is the primary key. The People_ID of candidate is the foreign key of People_ID of people. ###Input: {context} ###Response:<|eot_id|><|start_header_id|>assistant<|end_header_id|> """ # noqa: E501 EXPECTED_LORA_OUTPUT = [ "SELECT count(*) FROM candidate", "SELECT count(*) FROM candidate", "SELECT poll_source FROM candidate GROUP BY poll_source ORDER BY count(*) DESC LIMIT 1", # noqa: E501 "SELECT poll_source FROM candidate GROUP BY poll_source ORDER BY count(*) DESC LIMIT 1", # noqa: E501 ] MODEL_PATH = "meta-llama/Llama-3.2-3B-Instruct" def do_sample( llm: vllm.LLM, lora_path: str, lora_id: int, tensorizer_config_dict: dict | None = None, ) -> list[str]: prompts = [ PROMPT_TEMPLATE.format(context="How many candidates are there?"), PROMPT_TEMPLATE.format(context="Count the number of candidates."), PROMPT_TEMPLATE.format( context="Which poll resource provided the most number of candidate information?" # noqa: E501 ), PROMPT_TEMPLATE.format( context="Return the poll resource associated with the most candidates." ), ] sampling_params = vllm.SamplingParams( temperature=0, max_tokens=64, stop=["<|im_end|>"] ) if tensorizer_config_dict is not None: outputs = llm.generate( prompts, sampling_params, lora_request=LoRARequest( str(lora_id), lora_id, lora_path, tensorizer_config_dict=tensorizer_config_dict, ) if lora_id else None, ) else: outputs = llm.generate( prompts, sampling_params, lora_request=LoRARequest(str(lora_id), lora_id, lora_path) if lora_id else None, ) # Print the outputs. generated_texts: list[str] = [] for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text generated_texts.append(generated_text) print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") return generated_texts def generate_and_test( llm, llama32_lora_files, tensorizer_config_dict: dict | None = None ): print("lora adapter created") print("lora 1") assert ( do_sample( llm, llama32_lora_files, tensorizer_config_dict=tensorizer_config_dict, lora_id=1, ) == EXPECTED_LORA_OUTPUT ) print("lora 2") assert ( do_sample( llm, llama32_lora_files, tensorizer_config_dict=tensorizer_config_dict, lora_id=2, ) == EXPECTED_LORA_OUTPUT ) print("removing lora") @create_new_process_for_each_test() @pytest.mark.parametrize("cudagraph_specialize_lora", [True, False]) def test_llama_lora(llama32_lora_files, cudagraph_specialize_lora: bool): llm = vllm.LLM( MODEL_PATH, enable_lora=True, # also test odd max_num_seqs max_num_seqs=7, max_model_len=1024, max_loras=4, compilation_config=vllm.config.CompilationConfig( cudagraph_specialize_lora=cudagraph_specialize_lora, ), ) generate_and_test(llm, llama32_lora_files) @multi_gpu_test(num_gpus=4) def test_llama_lora_tp4(llama32_lora_files): llm = vllm.LLM( MODEL_PATH, enable_lora=True, max_num_seqs=7, max_model_len=1024, max_loras=4, tensor_parallel_size=4, ) generate_and_test(llm, llama32_lora_files) @multi_gpu_test(num_gpus=4) def test_llama_lora_tp4_fully_sharded_loras(llama32_lora_files): llm = vllm.LLM( MODEL_PATH, enable_lora=True, max_num_seqs=8, max_loras=4, max_model_len=1024, tensor_parallel_size=4, fully_sharded_loras=True, ) generate_and_test(llm, llama32_lora_files) @multi_gpu_test(num_gpus=2) def test_tp2_serialize_and_deserialize_lora( tmp_path, llama32_lora_files, ): # Run the tensorizing of the LoRA adapter and the model in a subprocess # to guarantee cleanup tp_size = 2 model_name = "model-rank-%03d.tensors" model_ref = MODEL_PATH lora_path = llama32_lora_files suffix = "test" try: result = subprocess.run( [ sys.executable, f"{VLLM_PATH}/examples/others/tensorize_vllm_model.py", "--model", MODEL_PATH, "--lora-path", lora_path, "--tensor-parallel-size", str(tp_size), "serialize", "--serialized-directory", str(tmp_path), "--suffix", suffix, "--serialization-kwargs", '{"limit_cpu_concurrency": 4}', ], check=True, capture_output=True, text=True, ) except subprocess.CalledProcessError as e: print("Tensorizing failed.") print("STDOUT:\n", e.stdout) print("STDERR:\n", e.stderr) raise print("STDOUT:\n", result.stdout) model_uri = tmp_path / "vllm" / model_ref / suffix / model_name tensorizer_config = TensorizerConfig(tensorizer_uri=str(model_uri)) loaded_llm = LLM( model=model_ref, load_format="tensorizer", enable_lora=True, enforce_eager=True, model_loader_extra_config=tensorizer_config, max_num_seqs=7, max_model_len=1024, tensor_parallel_size=2, max_loras=2, ) tc_as_dict = tensorizer_config.to_serializable() print("lora adapter created") print("lora 1") assert ( do_sample( loaded_llm, llama32_lora_files, tensorizer_config_dict=tc_as_dict, lora_id=1 ) == EXPECTED_LORA_OUTPUT )