# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # NOTE To avoid overloading the CI pipeline, this test script will not # be triggered on CI and is primarily intended for local testing and verification. import vllm from vllm.lora.request import LoRARequest from ..utils import multi_gpu_test MODEL_PATH = "Qwen/Qwen3-30B-A3B" PROMPT_TEMPLATE = """<|im_start|>user I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request. " ##Instruction: candidate_poll contains tables such as candidate, people. Table candidate has columns such as Candidate_ID, People_ID, Poll_Source, Date, Support_rate, Consider_rate, Oppose_rate, Unsure_rate. Candidate_ID is the primary key. Table people has columns such as People_ID, Sex, Name, Date_of_Birth, Height, Weight. People_ID is the primary key. The People_ID of candidate is the foreign key of People_ID of people. ###Input: {context} ###Response:<|im_end|> <|im_start|>assistant""" # noqa: E501 EXPECTED_LORA_OUTPUT = [ "\n\n\n\nSELECT count(*) FROM candidate", "\n\n\n\nSELECT count(*) FROM candidate", "\n\n\n\nSELECT poll_source FROM candidate GROUP BY poll_source ORDER BY count(*) DESC LIMIT 1", # noqa: E501 "\n\n\n\nSELECT poll_source FROM candidate GROUP BY poll_source ORDER BY count(*) DESC LIMIT 1", # noqa: E501 ] def generate_and_test(llm: vllm.LLM, lora_path: str, lora_id: int) -> None: prompts = [ PROMPT_TEMPLATE.format(context="How many candidates are there?"), PROMPT_TEMPLATE.format(context="Count the number of candidates."), PROMPT_TEMPLATE.format( context="Which poll resource provided the most number of candidate information?" # noqa: E501 ), PROMPT_TEMPLATE.format( context="Return the poll resource associated with the most candidates." ), ] sampling_params = vllm.SamplingParams(temperature=0, max_tokens=64) outputs = llm.generate( prompts, sampling_params, lora_request=LoRARequest(str(lora_id), lora_id, lora_path) if lora_id else None, ) # Print the outputs. generated_texts: list[str] = [] for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text.strip() generated_texts.append(generated_text) print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") for i in range(len(EXPECTED_LORA_OUTPUT)): assert generated_texts[i].startswith(EXPECTED_LORA_OUTPUT[i]) def test_qwen3moe_lora(qwen3moe_lora_files): # We enable enforce_eager=True here to reduce VRAM usage for lora-test CI, # Otherwise, the lora-test will fail due to CUDA OOM. llm = vllm.LLM( MODEL_PATH, max_model_len=1024, enable_lora=True, max_loras=4, enforce_eager=True, trust_remote_code=True, enable_chunked_prefill=True, ) generate_and_test(llm, qwen3moe_lora_files, lora_id=1) generate_and_test(llm, qwen3moe_lora_files, lora_id=2) @multi_gpu_test(num_gpus=2) def test_qwen3moe_lora_tp2(qwen3moe_lora_files): llm = vllm.LLM( MODEL_PATH, max_model_len=1024, enable_lora=True, max_loras=4, enforce_eager=True, trust_remote_code=True, enable_chunked_prefill=True, tensor_parallel_size=2, ) generate_and_test(llm, qwen3moe_lora_files, lora_id=1) generate_and_test(llm, qwen3moe_lora_files, lora_id=2) @multi_gpu_test(num_gpus=4) def test_qwen3moe_lora_tp4(qwen3moe_lora_files): llm = vllm.LLM( MODEL_PATH, max_model_len=1024, enable_lora=True, max_loras=4, enforce_eager=True, trust_remote_code=True, enable_chunked_prefill=True, tensor_parallel_size=4, ) generate_and_test(llm, qwen3moe_lora_files, lora_id=1) generate_and_test(llm, qwen3moe_lora_files, lora_id=2)