# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from collections.abc import Sequence from typing import Optional import pytest from tests.conftest import HfRunner from tests.models.utils import (EmbedModelInfo, check_embeddings_close, matryoshka_fy) def run_embedding_correctness_test( hf_model: "HfRunner", inputs: list[str], vllm_outputs: Sequence[list[float]], dimensions: Optional[int] = None, ): hf_outputs = hf_model.encode(inputs) if dimensions: hf_outputs = matryoshka_fy(hf_outputs, dimensions) check_embeddings_close( embeddings_0_lst=hf_outputs, embeddings_1_lst=vllm_outputs, name_0="hf", name_1="vllm", tol=1e-2, ) def correctness_test_embed_models(hf_runner, vllm_runner, model_info: EmbedModelInfo, example_prompts, vllm_extra_kwargs=None, hf_model_callback=None): if not model_info.enable_test: # A model family has many models with the same architecture, # and we don't need to test each one. pytest.skip("Skipping test.") # The example_prompts has ending "\n", for example: # "Write a short story about a robot that dreams for the first time.\n" # sentence_transformers will strip the input texts, see: # https://github.com/UKPLab/sentence-transformers/blob/v3.1.1/sentence_transformers/models/Transformer.py#L159 # This makes the input_ids different between hf_model and vllm_model. # So we need to strip the input texts to avoid test failing. example_prompts = [str(s).strip() for s in example_prompts] vllm_extra_kwargs = vllm_extra_kwargs or {} vllm_extra_kwargs["dtype"] = model_info.dtype with vllm_runner(model_info.name, runner="pooling", max_model_len=None, **vllm_extra_kwargs) as vllm_model: vllm_outputs = vllm_model.embed(example_prompts) with hf_runner( model_info.name, dtype="float32", is_sentence_transformer=True, ) as hf_model: if hf_model_callback is not None: hf_model_callback(hf_model) run_embedding_correctness_test(hf_model, example_prompts, vllm_outputs)