# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """ Shared PyTorch custom silly attention for compilation tests. Centralizes custom operation definitions to avoid duplicate registrations. """ import torch from torch.library import Library from vllm.utils.torch_utils import direct_register_custom_op # Shared library for all compilation test operations # Using "silly" namespace to match existing test expectations # import this file will automatically register # torch ops for testing (like silly.attention) silly_lib = Library("silly", "FRAGMENT") # Global counter that counts the number of times attention is invoked _global_counter = 0 def get_global_counter(): """Get the current global counter value""" return _global_counter def reset_global_counter(): """Reset the global counter to 0""" global _global_counter _global_counter = 0 def silly_attention( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, out: torch.Tensor ) -> None: """ Unified attention implementation that depends on all inputs and affects the output. Always increments a global counter that tests can use or ignore. """ global _global_counter # Always increment the global counter _global_counter += 1 # Unified implementation that depends on all inputs out.copy_(q + k + v) def silly_attention_fake( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, out: torch.Tensor ) -> None: """Fake implementation for testing""" return # Register the unified attention operation direct_register_custom_op( op_name="attention", op_func=silly_attention, mutates_args=["out"], fake_impl=silly_attention_fake, target_lib=silly_lib, )