# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Copyright 2025 The vLLM team. # Copyright 2025 NVIDIA CORPORATION and the HuggingFace Inc. team. All rights # reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import pytest from tests.models.registry import HF_EXAMPLE_MODELS from vllm import LLM, SamplingParams MODEL_NAME = "nvidia/audio-flamingo-3-hf" def get_fixture_path(filename): return os.path.join( os.path.dirname(__file__), "../../fixtures/audioflamingo3", filename ) @pytest.fixture(scope="module") def llm(): # Check if the model is supported by the current transformers version model_info = HF_EXAMPLE_MODELS.get_hf_info("AudioFlamingo3ForConditionalGeneration") model_info.check_transformers_version(on_fail="skip") try: llm = LLM( model=MODEL_NAME, trust_remote_code=True, dtype="bfloat16", enforce_eager=True, limit_mm_per_prompt={"audio": 1}, ) return llm except Exception as e: pytest.skip(f"Failed to load model {MODEL_NAME}: {e}") def test_single_generation(llm): fixture_path = get_fixture_path("expected_results_single.json") if not os.path.exists(fixture_path): pytest.skip(f"Fixture not found: {fixture_path}") with open(fixture_path) as f: expected = json.load(f) audio_url = "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/Why_do_we_ask_questions_converted.wav" messages = [ { "role": "user", "content": [ {"type": "audio_url", "audio_url": {"url": audio_url}}, {"type": "text", "text": "Transcribe the input speech."}, ], } ] sampling_params = SamplingParams(temperature=0.0, max_tokens=128) outputs = llm.chat( messages=messages, sampling_params=sampling_params, ) generated_text = outputs[0].outputs[0].text.strip() expected_text = expected["transcriptions"][0] assert expected_text in generated_text or generated_text in expected_text def test_batched_generation(llm): fixture_path = get_fixture_path("expected_results_batched.json") if not os.path.exists(fixture_path): pytest.skip(f"Fixture not found: {fixture_path}") with open(fixture_path) as f: expected = json.load(f) items = [ { "audio_url": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/dogs_barking_in_sync_with_the_music.wav", "question": "What is surprising about the relationship " "between the barking and the music?", "expected_idx": 0, }, { "audio_url": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/Ch6Ae9DT6Ko_00-04-03_00-04-31.wav", "question": ( "Why is the philosopher's name mentioned in the lyrics? " "(A) To express a sense of nostalgia " "(B) To indicate that language cannot express clearly, " "satirizing the inversion of black and white in the world " "(C) To add depth and complexity to the lyrics " "(D) To showcase the wisdom and influence of the philosopher" ), "expected_idx": 1, }, ] conversations = [] for item in items: messages = [ { "role": "user", "content": [ {"type": "audio_url", "audio_url": {"url": item["audio_url"]}}, {"type": "text", "text": item["question"]}, ], } ] conversations.append(messages) sampling_params = SamplingParams(temperature=0.0, max_tokens=128) outputs = llm.chat( messages=conversations, sampling_params=sampling_params, ) for i, output in enumerate(outputs): generated_text = output.outputs[0].text.strip() expected_text = expected["transcriptions"][i] assert expected_text in generated_text or generated_text in expected_text