# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """Tests whether bitsandbytes computation is enabled correctly. Run `pytest tests/quantization/test_bitsandbytes.py`. """ import pytest from transformers import BitsAndBytesConfig from tests.quantization.utils import is_quant_method_supported from vllm.platforms import current_platform from ...utils import compare_two_settings, multi_gpu_test from ..utils import check_embeddings_close, check_logprobs_close if current_platform.is_rocm(): from vllm.platforms.rocm import on_gfx9 pytestmark = pytest.mark.skipif( on_gfx9(), reason="bitsandbytes not supported on gfx9 (warp size 64 limitation)", ) models_4bit_to_test = [ ("facebook/opt-125m", "quantize opt model inflight"), ( "mistralai/Mistral-7B-Instruct-v0.3", "quantize inflight model with both HF and Mistral format weights", ), ] models_4bit_to_embedding_test = [ ("intfloat/e5-mistral-7b-instruct", "quantize embedding model inflight"), ] models_4bit_to_moe_test = [ ("allenai/OLMoE-1B-7B-0125-Instruct", "quantize moe model inflight"), ] models_pre_qaunt_4bit_to_test = [ ( "PrunaAI/Einstein-v6.1-Llama3-8B-bnb-4bit-smashed", "read pre-quantized 4-bit FP4 model", ), ("poedator/opt-125m-bnb-4bit", "read pre-quantized 4-bit NF4 opt model"), ] models_pre_quant_8bit_to_test = [ ("meta-llama/Llama-Guard-3-8B-INT8", "read pre-quantized llama 8-bit model"), ("yec019/fbopt-350m-8bit", "read pre-quantized 8-bit opt model"), ] @pytest.mark.skipif( not is_quant_method_supported("bitsandbytes"), reason="bitsandbytes is not supported on this GPU type.", ) @pytest.mark.parametrize("model_name, description", models_4bit_to_test) def test_load_4bit_bnb_model( hf_runner, vllm_runner, example_prompts, model_name, description ) -> None: hf_model_kwargs = dict(quantization_config=BitsAndBytesConfig(load_in_4bit=True)) validate_generated_texts( hf_runner, vllm_runner, example_prompts[:1], model_name, False, hf_model_kwargs ) @pytest.mark.skipif( not is_quant_method_supported("bitsandbytes"), reason="bitsandbytes is not supported on this GPU type.", ) @pytest.mark.parametrize("model_name, description", models_pre_qaunt_4bit_to_test) def test_load_pre_quant_4bit_bnb_model( hf_runner, vllm_runner, example_prompts, model_name, description ) -> None: validate_generated_texts( hf_runner, vllm_runner, example_prompts[:1], model_name, True ) @pytest.mark.skipif( not is_quant_method_supported("bitsandbytes"), reason="bitsandbytes is not supported on this GPU type.", ) @pytest.mark.parametrize("model_name, description", models_pre_quant_8bit_to_test) def test_load_8bit_bnb_model( hf_runner, vllm_runner, example_prompts, model_name, description ) -> None: validate_generated_texts( hf_runner, vllm_runner, example_prompts[:1], model_name, True ) @pytest.mark.skipif( not is_quant_method_supported("bitsandbytes"), reason="bitsandbytes is not supported on this GPU type.", ) @pytest.mark.parametrize("model_name, description", models_4bit_to_test) @multi_gpu_test(num_gpus=2) def test_load_tp_4bit_bnb_model( hf_runner, vllm_runner, example_prompts, model_name, description ) -> None: hf_model_kwargs = dict(quantization_config=BitsAndBytesConfig(load_in_4bit=True)) validate_generated_texts( hf_runner, vllm_runner, example_prompts[:1], model_name, False, hf_model_kwargs, vllm_tp_size=2, ) @pytest.mark.skipif( not is_quant_method_supported("bitsandbytes"), reason="bitsandbytes is not supported on this GPU type.", ) @pytest.mark.parametrize("model_name, description", models_4bit_to_test) @multi_gpu_test(num_gpus=2) def test_load_pp_4bit_bnb_model(model_name, description) -> None: common_args = [ "--disable-log-stats", "--dtype", "bfloat16", "--enable-prefix-caching", "--quantization", "bitsandbytes", "--gpu-memory-utilization", "0.7", ] pp_args = [ *common_args, "--pipeline-parallel-size", "2", ] compare_two_settings(model_name, common_args, pp_args) @pytest.mark.skipif( not is_quant_method_supported("bitsandbytes"), reason="bitsandbytes is not supported on this GPU type.", ) @pytest.mark.parametrize("model_name, description", models_4bit_to_moe_test) def test_4bit_bnb_moe_model( hf_runner, vllm_runner, example_prompts, model_name, description ) -> None: hf_model_kwargs = dict( quantization_config=BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, ) ) with vllm_runner( model_name, quantization="bitsandbytes", enforce_eager=False, default_torch_num_threads=1, ) as llm: vllm_outputs = llm.generate_greedy_logprobs( example_prompts, max_tokens=32, num_logprobs=5 ) with hf_runner( model_name, model_kwargs=hf_model_kwargs, default_torch_num_threads=1 ) as llm: transformers_outputs = llm.generate_greedy_logprobs_limit( example_prompts, max_tokens=32, num_logprobs=5 ) check_logprobs_close( outputs_0_lst=transformers_outputs, outputs_1_lst=vllm_outputs, name_0="transformers", name_1="vllm", ) @pytest.mark.skipif( not is_quant_method_supported("bitsandbytes"), reason="bitsandbytes is not supported on this GPU type.", ) @pytest.mark.parametrize("model_name, description", models_4bit_to_embedding_test) @pytest.mark.parametrize("dtype", ["half"]) def test_4bit_bnb_embedding_model( model_name, description, hf_runner, vllm_runner, example_prompts, dtype: str, ) -> None: # The example_prompts has ending "\n", for example: # "Write a short story about a robot that dreams for the first time.\n" # sentence_transformers will strip the input texts, see: # https://github.com/UKPLab/sentence-transformers/blob/v3.1.1/sentence_transformers/models/Transformer.py#L159 # This makes the input_ids different between hf_model and vllm_model. # So we need to strip the input texts to avoid test failing. example_prompts = [str(s).strip() for s in example_prompts] # Inflight 4bit quantization with vllm_runner( model_name, runner="pooling", dtype=dtype, gpu_memory_utilization=0.5, quantization="bitsandbytes", default_torch_num_threads=1, ) as vllm_model: vllm_outputs = vllm_model.embed(example_prompts) hf_model_kwargs = dict(quantization_config=BitsAndBytesConfig(load_in_4bit=True)) with hf_runner( model_name, dtype=dtype, model_kwargs=hf_model_kwargs, is_sentence_transformer=True, default_torch_num_threads=1, ) as hf_model: hf_outputs = hf_model.encode(example_prompts) check_embeddings_close( embeddings_0_lst=hf_outputs, embeddings_1_lst=vllm_outputs, name_0="hf", name_1="vllm", tol=5e-2, ) def log_generated_texts(prompts, outputs, runner_name): logged_texts = [] for i, (_, generated_text) in enumerate(outputs): log_entry = { "prompt": prompts[i], "runner_name": runner_name, "generated_text": generated_text, } logged_texts.append(log_entry) return logged_texts def validate_generated_texts( hf_runner, vllm_runner, prompts, model_name, pre_quant=False, hf_model_kwargs=None, vllm_tp_size=1, max_tokens=8, ): # NOTE: run vLLM first, as it requires a clean process # when using distributed inference with vllm_runner( model_name, quantization=None if pre_quant else "bitsandbytes", tensor_parallel_size=vllm_tp_size, enforce_eager=False, default_torch_num_threads=1, ) as llm: vllm_outputs = llm.generate_greedy(prompts, max_tokens) vllm_logs = log_generated_texts(prompts, vllm_outputs, "VllmRunner") if hf_model_kwargs is None: hf_model_kwargs = {} # Run with HF runner with hf_runner( model_name, model_kwargs=hf_model_kwargs, default_torch_num_threads=1 ) as llm: hf_outputs = llm.generate_greedy(prompts, max_tokens) hf_logs = log_generated_texts(prompts, hf_outputs, "HfRunner") # Compare the generated strings for hf_log, vllm_log in zip(hf_logs, vllm_logs): hf_str = hf_log["generated_text"] vllm_str = vllm_log["generated_text"] prompt = hf_log["prompt"] assert hf_str == vllm_str, ( f"Model: {model_name}" f"Mismatch between HF and vLLM outputs:\n" f"Prompt: {prompt}\n" f"HF Output: '{hf_str}'\n" f"vLLM Output: '{vllm_str}'" )