# SPDX-License-Identifier: Apache-2.0 from abc import abstractmethod from collections.abc import Iterable, Mapping, Sequence from functools import cached_property from typing import (Final, Literal, Optional, Protocol, Set, Tuple, TypedDict, TypeVar, Union, cast) import torch import torch.nn as nn from packaging.version import Version from transformers import (BatchFeature, CLIPVisionConfig, LlavaConfig, PixtralVisionConfig, PretrainedConfig, SiglipVisionConfig) from transformers import __version__ as TRANSFORMERS_VERSION from transformers.models.llava import LlavaProcessor from transformers.models.pixtral import PixtralProcessor from vllm.config import VllmConfig from vllm.inputs import InputProcessingContext from vllm.jsontree import JSONTree, json_map_leaves from vllm.model_executor.layers.activation import get_act_fn from vllm.model_executor.layers.linear import (ColumnParallelLinear, RowParallelLinear) from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig, MultiModalInputs, MultiModalKwargs, NestedTensors) from vllm.multimodal.parse import (ImageEmbeddingItems, ImageProcessorItems, ImageSize, MultiModalDataItems) from vllm.multimodal.processing import (BaseMultiModalProcessor, BaseProcessingInfo, ProcessingCache, PromptReplacement, PromptUpdate) from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs from vllm.sequence import IntermediateTensors from vllm.utils import flatten_2d_lists from .clip import CLIPVisionModel from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP from .pixtral import PixtralHFEncoderInfo, PixtralHFVisionModel from .siglip import SiglipVisionModel from .utils import (AutoWeightsLoader, flatten_bn, init_vllm_registered_model, maybe_prefix, merge_multimodal_embeddings) from .vision import get_vision_encoder_info class LlavaImagePixelInputs(TypedDict): type: Literal["pixel_values"] pixel_values: torch.Tensor """ Shape: `(batch_size * num_images, num_channels, height, width)` Note that `height` or `width` may be different per batch and image, in which case the data is passed as a list instead of a batched tensor. """ class PixtralHFImagePixelInputs(TypedDict): type: Literal["pixel_values_pixtral"] pixel_values: Union[torch.Tensor, list[torch.Tensor]] """ Shape: `(batch_size * num_images, num_channels, height, width)` Note that `height` or `width` may be different per batch and image, in which case the data is passed as a list instead of a batched tensor. """ embed_is_patch: Union[torch.Tensor, list[torch.Tensor]] """ A boolean mask indicating which image embeddings correspond to patch tokens. Shape: `(batch_size, num_images, num_embeds)` """ num_patches: Union[torch.Tensor, list[torch.Tensor]] """Shape: `(batch_size, num_images)`""" class LlavaImageEmbeddingInputs(TypedDict): type: Literal["image_embeds"] data: torch.Tensor """Shape: `(batch_size * num_images, image_feature_size, hidden_size)` `hidden_size` must match the hidden size of language model backbone. """ LlavaImageInputs = Union[LlavaImagePixelInputs, PixtralHFImagePixelInputs, LlavaImageEmbeddingInputs] class LlavaMultiModalProjector(nn.Module): def __init__(self, vision_hidden_size: int, text_hidden_size: int, projector_hidden_act: str, multimodal_projector_bias: bool, quant_config: Optional[QuantizationConfig] = None, prefix: str = ""): super().__init__() self.linear_1 = ColumnParallelLinear(vision_hidden_size, text_hidden_size, bias=multimodal_projector_bias, quant_config=quant_config, prefix=f"{prefix}.linear_1") self.act = get_act_fn(projector_hidden_act) self.linear_2 = RowParallelLinear(text_hidden_size, text_hidden_size, bias=multimodal_projector_bias, quant_config=quant_config, prefix=f"{prefix}.linear_2") def forward(self, image_features: torch.Tensor) -> torch.Tensor: hidden_states, _ = self.linear_1(image_features) hidden_states = self.act(hidden_states) hidden_states, _ = self.linear_2(hidden_states) return hidden_states class LlavaLikeConfig(Protocol): vision_config: Final[PretrainedConfig] image_token_index: Final[int] vision_feature_select_strategy: Final[str] vision_feature_layer: Final[Union[int, list[int]]] class LlavaLikeProcessor(Protocol): image_token: Final[str] class BaseLlavaProcessingInfo(BaseProcessingInfo): def get_hf_config(self) -> LlavaLikeConfig: return self.ctx.get_hf_config(LlavaConfig) def get_vision_encoder_info(self): return get_vision_encoder_info(self.get_hf_config()) @abstractmethod def get_hf_processor(self, **kwargs: object) -> LlavaLikeProcessor: raise NotImplementedError def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]: return {"image": None} def get_mm_max_tokens_per_item( self, seq_len: int, mm_counts: Mapping[str, int], ) -> Mapping[str, int]: return {"image": self.get_max_image_tokens()} def _apply_feature_select_strategy( self, strategy: str, encoder_num_image_tokens: int, ) -> int: if strategy == "default": return encoder_num_image_tokens - 1 if strategy == "full": return encoder_num_image_tokens msg = f"Unexpected feature select strategy: {strategy!r}" raise NotImplementedError(msg) def get_num_image_tokens( self, *, image_width: int, image_height: int, ) -> int: hf_config = self.get_hf_config() vision_encoder_info = self.get_vision_encoder_info() return self._apply_feature_select_strategy( hf_config.vision_feature_select_strategy, vision_encoder_info.get_num_image_tokens( image_width=image_width, image_height=image_height, ), ) def get_image_size_with_most_features(self) -> ImageSize: vision_encoder_info = self.get_vision_encoder_info() width = height = vision_encoder_info.get_image_size() return ImageSize(width=width, height=height) def get_max_image_tokens(self) -> int: target_width, target_height = self.get_image_size_with_most_features() return self.get_num_image_tokens( image_width=target_width, image_height=target_height, ) _I = TypeVar("_I", bound=BaseLlavaProcessingInfo) class LlavaDummyInputsBuilder(BaseDummyInputsBuilder[_I]): def get_dummy_processor_inputs( self, seq_len: int, mm_counts: Mapping[str, int], ) -> ProcessorInputs: num_images = mm_counts.get("image", 0) processor = self.info.get_hf_processor() image_token = processor.image_token target_width, target_height = \ self.info.get_image_size_with_most_features() mm_data = { "image": self._get_dummy_images(width=target_width, height=target_height, num_images=num_images) } return ProcessorInputs( prompt_text=image_token * num_images, mm_data=mm_data, ) class LlavaProcessingInfo(BaseLlavaProcessingInfo): def get_hf_processor(self, **kwargs: object): return self.ctx.get_hf_processor(LlavaProcessor, **kwargs) class BaseLlavaMultiModalProcessor(BaseMultiModalProcessor[_I]): # Copied from BaseMultiModalProcessor @abstractmethod def _get_mm_fields_config( self, hf_inputs: BatchFeature, hf_processor_mm_kwargs: Mapping[str, object], ) -> Mapping[str, MultiModalFieldConfig]: raise NotImplementedError def _get_prompt_updates( self, mm_items: MultiModalDataItems, hf_processor_mm_kwargs: Mapping[str, object], out_mm_kwargs: MultiModalKwargs, ) -> Sequence[PromptUpdate]: hf_config = self.info.get_hf_config() image_token_id = hf_config.image_token_index def get_replacement(item_idx: int): images = mm_items.get_items( "image", (ImageEmbeddingItems, ImageProcessorItems)) if isinstance(images, ImageEmbeddingItems): num_image_tokens = images.get_feature_size(item_idx) else: image_size = images.get_image_size(item_idx) num_image_tokens = self.info.get_num_image_tokens( image_width=image_size.width, image_height=image_size.height, ) return [image_token_id] * num_image_tokens return [ PromptReplacement( modality="image", target=[image_token_id], replacement=get_replacement, ), ] class LlavaMultiModalProcessor( BaseLlavaMultiModalProcessor[LlavaProcessingInfo]): def _get_mm_fields_config( self, hf_inputs: BatchFeature, hf_processor_mm_kwargs: Mapping[str, object], ) -> Mapping[str, MultiModalFieldConfig]: return dict( pixel_values=MultiModalFieldConfig.batched("image"), image_embeds=MultiModalFieldConfig.batched("image"), ) class PixtralHFProcessingInfo(BaseLlavaProcessingInfo): def get_hf_processor(self, **kwargs: object): return self.ctx.get_hf_processor(PixtralProcessor, **kwargs) class PixtralHFMultiModalProcessor( BaseMultiModalProcessor[PixtralHFProcessingInfo]): def _call_hf_processor( self, prompt: str, mm_data: Mapping[str, object], mm_kwargs: Mapping[str, object], ) -> BatchFeature: processed_outputs = super()._call_hf_processor( prompt=prompt, mm_data=mm_data, mm_kwargs=mm_kwargs, ) pixel_values = processed_outputs.get("pixel_values") if pixel_values is not None: # Before/after https://github.com/huggingface/transformers/pull/35122 if Version(TRANSFORMERS_VERSION) <= Version("4.48.3"): images = mm_data["images"] assert isinstance(images, list) # Original output: (1, num_images, C, H, W) # New output: (num_images, C, H, W) assert (isinstance(pixel_values, list) and len(pixel_values) == 1) assert (isinstance(pixel_values[0], list) and len(pixel_values[0]) == len(images)) processed_outputs["pixel_values"] = pixel_values[0] else: # Avoid padding since we need the output for each image to be # independent of other images for the cache to work correctly image_sizes = processed_outputs["image_sizes"] assert len(pixel_values) == len(image_sizes) processed_outputs["pixel_values"] = [ p[:, :h, :w] for p, (h, w) in zip(pixel_values, image_sizes) ] hf_config = self.info.get_hf_config() vision_config = hf_config.vision_config assert isinstance(vision_config, PixtralVisionConfig) encoder_info = PixtralHFEncoderInfo(vision_config) tile_sizes = [ encoder_info.get_patch_grid_size( image_width=pixel_value.shape[-1], image_height=pixel_value.shape[-2], ) for pixel_value in processed_outputs["pixel_values"] ] num_patches = torch.tensor([(ncols + 1) * nrows for ncols, nrows in tile_sizes]) # Each image may result to masks of different sizes, so we need to # later use `num_patches` to get per-image masks. embed_is_patch = [ torch.tensor(([True] * ncols + [False]) * nrows) for ncols, nrows in tile_sizes ] processed_outputs["num_patches"] = num_patches processed_outputs["embed_is_patch"] = embed_is_patch return processed_outputs def _get_mm_fields_config( self, hf_inputs: BatchFeature, hf_processor_mm_kwargs: Mapping[str, object], ) -> Mapping[str, MultiModalFieldConfig]: return dict( pixel_values=MultiModalFieldConfig.batched("image"), num_patches=MultiModalFieldConfig.batched("image"), embed_is_patch=MultiModalFieldConfig.batched("image"), image_embeds=MultiModalFieldConfig.batched("image"), ) def _get_prompt_updates( self, mm_items: MultiModalDataItems, hf_processor_mm_kwargs: Mapping[str, object], out_mm_kwargs: MultiModalKwargs, ) -> Sequence[PromptUpdate]: processor = self.info.get_hf_processor(**hf_processor_mm_kwargs) hf_config = self.info.get_hf_config() tokenizer = self.info.get_tokenizer() vocab = tokenizer.get_vocab() image_break_id = vocab[processor.image_break_token] image_token_id = hf_config.image_token_index image_end_id = vocab[processor.image_end_token] vision_config = hf_config.vision_config assert isinstance(vision_config, PixtralVisionConfig) encoder_info = PixtralHFEncoderInfo(vision_config) def get_replacement(item_idx: int): images = mm_items.get_items("image", ImageProcessorItems) image_size = images.get_image_size(item_idx) ncols, nrows = encoder_info.get_patch_grid_size( image_width=image_size.width, image_height=image_size.height, ) tokens = ([image_token_id] * ncols + [image_break_id]) * nrows tokens[-1] = image_end_id return tokens return [ PromptReplacement( modality="image", target=[image_token_id], replacement=get_replacement, ), ] def _build_llava_or_pixtral_hf_info( ctx: InputProcessingContext, ) -> BaseLlavaProcessingInfo: hf_config = ctx.get_hf_config(LlavaConfig) if isinstance(hf_config.vision_config, PixtralVisionConfig): return PixtralHFProcessingInfo(ctx) return LlavaProcessingInfo(ctx) def _build_llava_or_pixtral_hf_processor( info: _I, dummy_inputs: BaseDummyInputsBuilder[_I], *, cache: Optional[ProcessingCache] = None, enable_sanity_checks: bool = True, ) -> BaseMultiModalProcessor: if isinstance(info, PixtralHFProcessingInfo): return PixtralHFMultiModalProcessor( info, dummy_inputs, # type: ignore cache=cache, enable_sanity_checks=enable_sanity_checks, ) if isinstance(info, LlavaProcessingInfo): return LlavaMultiModalProcessor( info, dummy_inputs, # type: ignore cache=cache, enable_sanity_checks=enable_sanity_checks, ) raise NotImplementedError(type(info)) def _get_num_hidden_layers(hf_config: LlavaLikeConfig) -> int: """Determine the number of hidden layers to initialize up to in the visual encoder. Args: hf_config: Model config with vision feature layer(s). """ feature_layers = hf_config.vision_feature_layer num_hidden_layers = hf_config.vision_config.num_hidden_layers # If we have one feature layer, initialize up to that layer if isinstance(feature_layers, int): return _get_layer_index(feature_layers, num_hidden_layers) # If we have multiple feature layers, initialize up to the deepest one elif isinstance(feature_layers, (list, tuple)): return max( _get_layer_index(idx, num_hidden_layers) for idx in feature_layers) raise TypeError(f"vision_layer_feature type: {type(feature_layers)}" " is not supported") def _get_layer_index(feature_layer_index: int, num_hidden_layers: int) -> int: """Given a signed vision feature layer, get the number of hidden layers needed to leverage it. Args: feature_layer_index: Index of a required layer in the visual encoder. num_hidden_layers: The total number of hidden layers in the visual encoder. """ if feature_layer_index < 0: return num_hidden_layers + feature_layer_index + 1 return feature_layer_index def init_vision_tower_for_llava( hf_config: LlavaLikeConfig, quant_config: Optional[QuantizationConfig], *, require_post_norm: Optional[bool] = None, prefix: str = "", ) -> Union[CLIPVisionModel, SiglipVisionModel, PixtralHFVisionModel]: vision_config = hf_config.vision_config # Initialize the vision tower only up to the deepest required feature layer num_hidden_layers = _get_num_hidden_layers(hf_config) if isinstance(vision_config, CLIPVisionConfig): return CLIPVisionModel( vision_config, quant_config=quant_config, num_hidden_layers_override=num_hidden_layers, require_post_norm=require_post_norm, prefix=prefix, ) elif isinstance(vision_config, SiglipVisionConfig): return SiglipVisionModel( vision_config, quant_config=quant_config, num_hidden_layers_override=num_hidden_layers, require_post_norm=require_post_norm, prefix=prefix, ) elif isinstance(vision_config, PixtralVisionConfig): return PixtralHFVisionModel( vision_config, quant_config=quant_config, num_hidden_layers_override=num_hidden_layers, require_post_norm=require_post_norm, prefix=prefix, ) msg = f"Unsupported vision config: {type(vision_config)}" raise NotImplementedError(msg) @MULTIMODAL_REGISTRY.register_processor(_build_llava_or_pixtral_hf_processor, info=_build_llava_or_pixtral_hf_info, dummy_inputs=LlavaDummyInputsBuilder) class LlavaForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP): packed_modules_mapping = { "qkv_proj": ["q_proj", "k_proj", "v_proj"], "gate_up_proj": ["gate_proj", "up_proj"] } def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None: super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config multimodal_config = vllm_config.model_config.multimodal_config self.config = config self.multimodal_config = multimodal_config # NOTE: These are special cases for Pixtral-12B in the HF-format # https://huggingface.co/mistral-community/pixtral-12b/blob/main/config.json # noqa if (config.text_config.architectures is None and config.text_config.model_type == "mistral"): config.text_config.architectures = ["MistralForCausalLM"] if (config.projector_hidden_act is None and config.vision_config.hidden_act == "gelu"): config.projector_hidden_act = "gelu" # TODO: Optionally initializes this for supporting embeddings. self.vision_tower = init_vision_tower_for_llava( config, quant_config, require_post_norm=False, prefix=maybe_prefix(prefix, "vision_tower")) self.multi_modal_projector = LlavaMultiModalProjector( vision_hidden_size=config.vision_config.hidden_size, text_hidden_size=config.text_config.hidden_size, projector_hidden_act=config.projector_hidden_act, multimodal_projector_bias=config.multimodal_projector_bias, quant_config=quant_config, prefix=maybe_prefix(prefix, "multi_modal_projector")) self.language_model = init_vllm_registered_model( vllm_config=vllm_config, hf_config=config.text_config, prefix=maybe_prefix(prefix, "language_model"), ) self.make_empty_intermediate_tensors = ( self.language_model.make_empty_intermediate_tensors) @cached_property def sampler(self): if hasattr(self.language_model, "sampler"): return self.language_model.sampler return get_sampler() def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor: h = w = self.config.vision_config.image_size expected_dims = (3, h, w) actual_dims = tuple(data.shape[1:]) if actual_dims != expected_dims: expected_expr = ("batch_size", *map(str, expected_dims)) raise ValueError( f"The expected shape of pixel values is {expected_expr}. " f"You supplied {tuple(data.shape)}.") return data def _parse_and_validate_image_input( self, **kwargs: object) -> Optional[LlavaImageInputs]: pixel_values = kwargs.pop("pixel_values", None) image_embeds = kwargs.pop("image_embeds", None) if pixel_values is None and image_embeds is None: return None if pixel_values is not None: if not isinstance(pixel_values, (torch.Tensor, list)): raise ValueError("Incorrect type of pixel values. " f"Got type: {type(pixel_values)}") if self.config.vision_config.model_type == "pixtral": embed_is_patch = kwargs.pop("embed_is_patch") if not isinstance(embed_is_patch, (torch.Tensor, list)): raise ValueError("Incorrect type of embed_is_patch. " f"Got type: {type(embed_is_patch)}") num_patches = kwargs.pop("num_patches") if not isinstance(num_patches, (torch.Tensor, list)): raise ValueError("Incorrect type of num_patches. " f"Got type: {type(num_patches)}") return PixtralHFImagePixelInputs( type="pixel_values_pixtral", pixel_values=flatten_bn(pixel_values), embed_is_patch=embed_is_patch, num_patches=num_patches, ) return LlavaImagePixelInputs( type="pixel_values", pixel_values=self._validate_pixel_values( flatten_bn(pixel_values, concat=True)), ) if image_embeds is not None: if not isinstance(image_embeds, (torch.Tensor, list)): raise ValueError("Incorrect type of image embeddings. " f"Got type: {type(image_embeds)}") if self.config.vision_config.model_type == "pixtral": raise ValueError("Pixtral-HF does not support image_embeds.") return LlavaImageEmbeddingInputs( type="image_embeds", data=flatten_bn(image_embeds, concat=True), ) raise AssertionError("This line should be unreachable.") def _select_image_features(self, image_features: torch.Tensor, *, strategy: str) -> torch.Tensor: # Copied from https://github.com/huggingface/transformers/blob/39c3c0a72af6fbda5614dde02ff236069bb79827/src/transformers/models/llava/modeling_llava.py#L421 # noqa if strategy == "default": return image_features[:, 1:] elif strategy == "full": return image_features raise ValueError(f"Unexpected select feature strategy: {strategy}") def _image_pixels_to_features( self, vision_tower: Union[CLIPVisionModel, SiglipVisionModel, PixtralHFVisionModel], pixel_values: Union[torch.Tensor, list[torch.Tensor]], ) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]: # NOTE: we skip the step to select the vision feature layer since # this is already done inside the vision tower image_features = vision_tower(pixel_values) def select_features(leaf: torch.Tensor): return self._select_image_features( leaf, strategy=self.config.vision_feature_select_strategy, ) return cast( Union[torch.Tensor, tuple[torch.Tensor, ...]], json_map_leaves(select_features, image_features), ) def _process_image_pixels( self, inputs: Union[LlavaImagePixelInputs, PixtralHFImagePixelInputs], ) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]: assert self.vision_tower is not None pixel_values = inputs["pixel_values"] return self._image_pixels_to_features(self.vision_tower, pixel_values) def _process_image_input( self, image_input: LlavaImageInputs, ) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]: if image_input["type"] == "image_embeds": return image_input["data"] assert self.vision_tower is not None image_features = self._process_image_pixels(image_input) if isinstance(image_features, torch.Tensor): return self.multi_modal_projector(image_features) feature_sizes = [ image_feature.shape[0] for image_feature in image_features ] image_embeds = self.multi_modal_projector(torch.cat(image_features)) image_embeds = torch.split(image_embeds, feature_sizes) return image_embeds def _get_mm_embeds( self, features: torch.Tensor, # Shape: (num_patch, d) num_patches: torch.Tensor, # Shape: (num_images,) embed_is_patch: torch.Tensor, # Shape: (num_images, num_embeds) ) -> tuple[torch.Tensor, ...]: """Scatter the patch features into a contiguous tensor that corresponds to the embedding tokens defined by the multimodal processor. Mostly copied from `Molmo._get_mm_embeds`. See following fixme comment. """ # Insert columns of nan values according to `embed_is_patch`. This work # ideally should be done in `_process_image_input`, but # `_process_image_input` is used in both V0 and V1 path. It's safer to # put the logic here. # FIXME: Move this logic to `_process_image_input` when v0 is # deprecated. Merge this function with `Molmo._get_mm_embeds`. num_patches_per_image: list[int] = num_patches.tolist() embeds_flat = features.new_full( (sum(num_patches_per_image), *features.shape[1:]), fill_value=torch.nan, ) embeds_flat[embed_is_patch.view(-1)] = features return embeds_flat.split(num_patches_per_image) def get_multimodal_embeddings( self, **kwargs: object) -> Optional[MultiModalEmbeddings]: image_input = self._parse_and_validate_image_input(**kwargs) if image_input is None: return None vision_embeddings = self._process_image_input(image_input) if (kwargs.get("v0_path", False) or image_input["type"] != "pixel_values_pixtral"): # The path is used for pixtral (V0 only) and llava (V0/V1) return vision_embeddings return flatten_2d_lists( self._get_mm_embeds(*args) for args in zip( vision_embeddings, image_input["num_patches"], image_input["embed_is_patch"], )) def get_input_embeddings( self, input_ids: torch.Tensor, multimodal_embeddings: Optional[MultiModalEmbeddings] = None, ) -> torch.Tensor: inputs_embeds = self.language_model.get_input_embeddings(input_ids) if multimodal_embeddings is not None: # Extract the patch tokens patch_embeddings = json_map_leaves( lambda x: x[~x.isnan()].view(-1, *x.shape[1:]), cast(JSONTree[torch.Tensor], multimodal_embeddings), ) inputs_embeds = merge_multimodal_embeddings( input_ids, inputs_embeds, cast(NestedTensors, patch_embeddings), self.config.image_token_index, ) return inputs_embeds def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, **kwargs: object, ) -> Union[torch.Tensor, IntermediateTensors]: """Run forward pass for LLaVA-1.5. One key thing to understand is the `input_ids` already accounts for the positions of the to-be-inserted image embeddings. Concretely, consider a text prompt: `"USER: \\nWhat's the content of the image?\\nASSISTANT:"`. Tokenizer outputs: `[1, 3148, 1001, 29901, 29871, 32000, 29871, 13, 5618, 29915, 29879, 278, 2793, 310, 278, 1967, 29973, 13, 22933, 9047, 13566, 29901]`. To reserve space in KV cache, we have to insert placeholder tokens before they are inputted to the model, so the input processor prepends additional image tokens (denoted as `32000`), resulting in: `[1, 3148, 1001, 29901, 29871, 32000, ..., 32000, 29871, 13, 5618, 29915, 29879, 278, 2793, 310, 278, 1967, 29973, 13, 22933, 9047, 13566, 29901]`. We insert 575 tokens so that including the original image token in the input, there are a total of 576 (24 * 24) image tokens, which corresponds to the number of image tokens inputted to the language model, i.e. the number of image tokens outputted by the visual encoder. This way, the `positions` and `attn_metadata` are consistent with the `input_ids`. Args: input_ids: Flattened (concatenated) input_ids corresponding to a batch. pixel_values: The pixels in each input image. See also: :class:`LlavaImageInputs` """ if intermediate_tensors is not None: inputs_embeds = None # NOTE: In v1, inputs_embeds is always generated at model runner, this # condition is for v0 compatibility. elif inputs_embeds is None: kwargs.update({"v0_path": True}) vision_embeddings = self.get_multimodal_embeddings(**kwargs) inputs_embeds = self.get_input_embeddings(input_ids, vision_embeddings) input_ids = None hidden_states = self.language_model.model(input_ids, positions, intermediate_tensors, inputs_embeds=inputs_embeds) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: return self.language_model.compute_logits(hidden_states, sampling_metadata) def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: return self.language_model.sample(logits, sampling_metadata) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]: loader = AutoWeightsLoader(self) return loader.load_weights(weights) class MantisProcessingInfo(LlavaProcessingInfo): def get_hf_processor(self, **kwargs: object): hf_config = self.get_hf_config() vision_info = self.get_vision_encoder_info() kwargs.setdefault("patch_size", vision_info.get_patch_size()) if Version(TRANSFORMERS_VERSION) < Version("4.48"): # BUG: num_additional_image_tokens = 0 but treated as 1, # so we set vision_feature_select_strategy to None to offset this kwargs.setdefault("vision_feature_select_strategy", None) else: # FIXED: https://github.com/huggingface/transformers/pull/33424/files#diff-6a37acc21efcadaae622b079b2712a131131448ff64262bd219aa346aeec38faL150 kwargs.setdefault( "vision_feature_select_strategy", hf_config.vision_feature_select_strategy, ) return self.ctx.get_hf_processor(LlavaProcessor, **kwargs) class MantisMultiModalProcessor(LlavaMultiModalProcessor): def apply( self, prompt: Union[str, list[int]], mm_data: MultiModalDataDict, hf_processor_mm_kwargs: Mapping[str, object], return_mm_hashes: bool = False, ) -> MultiModalInputs: hf_config = self.info.get_hf_config() image_token_id = hf_config.image_token_index # Assume that it doesn't depend on the image size num_image_tokens = self.info.get_num_image_tokens( image_width=-1, image_height=-1, ) result = super().apply(prompt, mm_data, hf_processor_mm_kwargs, return_mm_hashes) mm_items = self._to_mm_items(mm_data) mm_item_counts = mm_items.get_all_counts() mm_kwargs = result["mm_kwargs"] # We reimplement the functionality of MLlavaProcessor from # https://github.com/TIGER-AI-Lab/Mantis.git def get_replacement_mantis(item_idx: int): return "".join([ f"(image {item_idx+1}: ", # 7 tokens "" * num_image_tokens, ")", # 3 tokens ]) mantis_mm_repls = self._bind_and_group_updates([ PromptReplacement( modality="image", target=[image_token_id] * num_image_tokens, replacement=get_replacement_mantis, ) ]) prompt_ids, prompt, _ = self._apply_prompt_updates( result["prompt_token_ids"], mantis_mm_repls, mm_item_counts, ) unbound_orig_repls = self._get_prompt_updates( mm_items, hf_processor_mm_kwargs, mm_kwargs, ) orig_repls = self._bind_and_group_updates(unbound_orig_repls) mm_placeholders = self._find_mm_placeholders( orig_repls, prompt_ids, mm_item_counts, ) self._validate_mm_placeholders(mm_placeholders, mm_item_counts) mm_placeholder_ranges = { modality: [item.to_range() for item in placeholders] for modality, placeholders in mm_placeholders.items() } return MultiModalInputs( type="multimodal", prompt=prompt, prompt_token_ids=prompt_ids, mm_kwargs=mm_kwargs, mm_placeholders=mm_placeholder_ranges, ) # To use this model, please use # `--hf_overrides '{"architectures": ["MantisForConditionalGeneration"]}'` @MULTIMODAL_REGISTRY.register_processor(MantisMultiModalProcessor, info=MantisProcessingInfo, dummy_inputs=LlavaDummyInputsBuilder) class MantisForConditionalGeneration(LlavaForConditionalGeneration): pass