# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from itertools import repeat from typing import Any import pytest import torch._dynamo.config as dynamo_config from vllm import SamplingParams from vllm.logprobs import Logprob from vllm.sampling_params import StructuredOutputsParams from vllm.v1.metrics.reader import Metric from ...conftest import VllmRunner from ...models.utils import check_outputs_equal MODEL = "Qwen/Qwen3-0.6B" MTP_MODEL = "meta-llama/Llama-3.2-1B-Instruct" first_prompt = ( "The following numbers of the sequence " + ", ".join(str(i) for i in range(10)) + " are:" ) example_prompts = [first_prompt, "In one word, the capital of France is "] + [ f"Tell me about the number {i}: " for i in range(32) ] default_params = dict( temperature=0.0, # greedy max_tokens=23, min_tokens=18, ) def test_without_spec_decoding( sample_json_schema, monkeypatch: pytest.MonkeyPatch, ): """Test consistency of combos of async scheduling, preemption, uni/multiproc executor, prefill chunking.""" struct_outputs = StructuredOutputsParams(json=sample_json_schema) test_sampling_params: list[dict[str, Any]] = [ dict(), # dict(min_tokens=20), dict(presence_penalty=-1.0), dict(bad_words=["the", " the"]), dict(logprobs=2), dict(logprobs=2, presence_penalty=-1.0), dict(structured_outputs=struct_outputs), dict( structured_outputs=struct_outputs, logprobs=2, presence_penalty=-1.0, ), ] # test_preemption, executor, async_scheduling, # spec_config, test_prefill_chunking test_configs = [ (False, "mp", False, None, False), (True, "mp", False, None, True), (False, "mp", True, None, False), (False, "uni", True, None, False), (True, "mp", True, None, False), (True, "uni", True, None, False), (False, "mp", True, None, True), (True, "mp", True, None, True), (True, "uni", True, None, True), ] run_tests(monkeypatch, MODEL, test_configs, test_sampling_params) def test_with_spec_decoding(monkeypatch: pytest.MonkeyPatch): """Test consistency and acceptance rates with some different combos of preemption, executor, async scheduling, prefill chunking, spec decoding model length. """ spec_config = { "method": "eagle3", "num_speculative_tokens": 2, "model": "nm-testing/Llama3_2_1B_speculator.eagle3", } # Set small draft model len to force doesn't-fit-in-drafter case. spec_config_short = spec_config | {"max_model_len": 50} test_sampling_params = [ dict(), dict(logprobs=2), ] # test_preemption, executor, async_scheduling, # spec_config, test_prefill_chunking test_configs = [ (False, "mp", False, None, False), (False, "mp", False, spec_config, False), (True, "mp", False, spec_config, True), (True, "uni", False, spec_config_short, True), (False, "mp", True, spec_config, False), (True, "mp", True, spec_config, False), (False, "mp", True, spec_config_short, True), (True, "uni", True, spec_config, False), (True, "uni", True, spec_config_short, False), (True, "mp", True, spec_config, True), (True, "uni", True, spec_config_short, True), ] run_tests(monkeypatch, MTP_MODEL, test_configs, test_sampling_params) @dynamo_config.patch(cache_size_limit=16) def run_tests( monkeypatch: pytest.MonkeyPatch, model: str, test_configs: list[tuple], test_sampling_params: list[dict[str, Any]], ): """Test consistency of combos of async scheduling, preemption, uni/multiproc executor with spec decoding.""" with monkeypatch.context() as m: # avoid precision errors m.setenv("VLLM_ATTENTION_BACKEND", "FLEX_ATTENTION") # m.setenv("VLLM_BATCH_INVARIANT", "1") outputs: list[tuple[str, list, list]] = [] for n, ( test_preemption, executor, async_scheduling, spec_config, test_prefill_chunking, ) in enumerate(test_configs, 1): test_str = f"{n}/{len(test_configs)}" test_results = run_test( model, test_str, test_sampling_params, test_preemption, executor, async_scheduling, spec_config, test_prefill_chunking=test_prefill_chunking, ) outputs.append(test_results) baseline_config, baseline_tests, _ = outputs[0] _, _, baseline_acceptances = next( (o for o in outputs if o[2] is not None), (None, None, None) ) print(f"BASELINE: config=[{baseline_config}], accept_rates={baseline_acceptances}") failure = None for test_config, test_outputs, test_acceptance_rates in outputs[1:]: for (base_outs, base_logprobs), base_acceptance_rate, ( test_outs, test_logprobs, ), test_acceptance_rate, params in zip( baseline_tests, baseline_acceptances or repeat(None), test_outputs, test_acceptance_rates or repeat(None), test_sampling_params, ): try: check_outputs_equal( outputs_0_lst=base_outs, outputs_1_lst=test_outs, name_0=f"baseline=[{baseline_config}], params={params}", name_1=f"config=[{test_config}], params={params}", ) assert _all_logprobs_match(base_logprobs, test_logprobs) if ( base_acceptance_rate is not None and test_acceptance_rate is not None ): if "spec_mml=None" in test_config: assert ( test_acceptance_rate > base_acceptance_rate or test_acceptance_rate == pytest.approx(base_acceptance_rate, rel=5e-2) ) else: # Currently the reported acceptance rate is expected to be # lower when we sometimes skip drafting altogether. assert test_acceptance_rate > 0.1 print( f"PASSED: config=[{test_config}], params={params}" f" accept_rate={test_acceptance_rate}" ) except AssertionError as e: print( f"FAILED: config=[{test_config}], params={params}" f" accept_rate={test_acceptance_rate}" ) if failure is None: failure = e if failure is not None: raise failure def run_test( model: str, test_str: str, sampling_param_tests: list[dict[str, Any]], test_preemption: bool, executor: str, async_scheduling: bool, spec_config: dict[str, Any] | None, test_prefill_chunking: bool, ): spec_decoding = spec_config is not None cache_arg: dict[str, Any] = ( # Force preemptions dict(num_gpu_blocks_override=32) if test_preemption else dict(gpu_memory_utilization=0.9) ) spec_mml = (spec_config or {}).get("max_model_len") test_config = ( f"executor={executor}, preemption={test_preemption}, " f"async_sched={async_scheduling}, " f"chunk_prefill={test_prefill_chunking}, " f"spec_decoding={spec_decoding}, spec_mml={spec_mml}" ) print("-" * 80) print(f"---- TESTING {test_str}: {test_config}") print("-" * 80) with VllmRunner( model, max_model_len=512, enable_chunked_prefill=test_prefill_chunking, # Force prefill chunking max_num_batched_tokens=48 if test_prefill_chunking else None, # enforce_eager=True, async_scheduling=async_scheduling, distributed_executor_backend=executor, dtype="float32", # avoid precision errors speculative_config=spec_config, disable_log_stats=False, **cache_arg, ) as vllm_model: results = [] acceptance_rates: list[float] | None = [] if spec_decoding else None for override_params in sampling_param_tests: metrics_before = vllm_model.llm.get_metrics() print(f"----------- RUNNING PARAMS: {override_params}") results.append( vllm_model.generate( example_prompts, sampling_params=SamplingParams(**default_params, **override_params), return_logprobs=True, ) ) metrics_after = vllm_model.llm.get_metrics() if acceptance_rates is not None: acceptance_rate = _get_acceptance_rate(metrics_before, metrics_after) acceptance_rates.append(acceptance_rate) print(f"ACCEPTANCE RATE {acceptance_rate}") if test_preemption: preemptions = _get_count( metrics_before, metrics_after, "vllm:num_preemptions" ) assert preemptions > 0, "preemption test had no preemptions" if len(results) > 1: # First check that the different parameter configs # actually result in different output. for (other_test_outs, other_test_logprobs), params in zip( results[1:], sampling_param_tests[1:] ): with pytest.raises(AssertionError): check_outputs_equal( outputs_0_lst=results[0][0], outputs_1_lst=other_test_outs, name_0=f"baseline params={params}", name_1=f"other params={params}", ) assert _all_logprobs_match(results[0][1], other_test_logprobs) return test_config, results, acceptance_rates def _all_logprobs_match(req_a, req_b) -> bool: return ( req_a == req_b or len(req_a) == len(req_b) and all( len(seq_a) == len(seq_b) and all(_logprobs_match(a, b) for a, b in zip(seq_a, seq_b)) for seq_a, seq_b in zip(req_a, req_b) ) ) def _logprobs_match(lps_a: dict[int, Logprob], lps_b: dict[int, Logprob]) -> bool: return len(lps_a) == len(lps_b) and all( a.decoded_token == b.decoded_token and a.rank == b.rank and a.logprob == pytest.approx(b.logprob, rel=1e-3, abs=1e-6) for a, b in ((lps_a[x], lps_b[x]) for x in lps_a) ) def _get_acceptance_rate(before: list[Metric], after: list[Metric]) -> float: draft = _get_count(before, after, "vllm:spec_decode_num_draft_tokens") accept = _get_count(before, after, "vllm:spec_decode_num_accepted_tokens") return accept / draft if draft > 0 else 0.0 def _get_count(before: list[Metric], after: list[Metric], name: str) -> int: before_val = next(m.value for m in before if m.name == name) after_val = next(m.value for m in after if m.name == name) return after_val - before_val