# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """Minimal implementation of BlipVisionModel intended to be only used within a vision language model.""" from collections.abc import Iterable import torch import torch.nn as nn from transformers import Blip2VisionConfig, BlipVisionConfig from vllm.attention.layer import MultiHeadAttention from vllm.distributed import divide, get_tensor_model_parallel_world_size from vllm.model_executor.layers.activation import get_act_fn from vllm.model_executor.layers.linear import ( ColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.model_loader.weight_utils import default_weight_loader from .interfaces import SupportsQuant def get_blip_patch_grid_length(*, image_size: int, patch_size: int) -> int: assert image_size % patch_size == 0 return image_size // patch_size def get_blip_num_patches(*, image_size: int, patch_size: int) -> int: grid_length = get_blip_patch_grid_length( image_size=image_size, patch_size=patch_size ) return grid_length * grid_length # Adapted from https://github.com/huggingface/transformers/blob/v4.39.0/src/transformers/models/blip/modeling_blip.py#L164 # noqa class BlipVisionEmbeddings(nn.Module): def __init__(self, config: BlipVisionConfig | Blip2VisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, ) self.num_patches = get_blip_num_patches( image_size=self.image_size, patch_size=self.patch_size ) self.num_positions = self.num_patches + 1 self.position_embedding = nn.Parameter( torch.randn(1, self.num_positions, self.embed_dim) ) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding( pixel_values.to(dtype=target_dtype) ) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) position_embeds = self.position_embedding.to(target_dtype) embeddings = embeddings + position_embeds[:, : embeddings.size(1), :] return embeddings class BlipAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, config: BlipVisionConfig | Blip2VisionConfig, quant_config: QuantizationConfig | None = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( "embed_dim must be divisible by num_heads " f"(got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.qkv = QKVParallelLinear( self.embed_dim, self.head_dim, self.num_heads, bias=config.qkv_bias, quant_config=quant_config, prefix=f"{prefix}.qkv", ) self.projection = RowParallelLinear( self.embed_dim, self.embed_dim, quant_config=quant_config, prefix=f"{prefix}.projection", ) self.tp_size = get_tensor_model_parallel_world_size() self.num_heads_per_partition = divide(self.num_heads, self.tp_size) self.attn = MultiHeadAttention( self.num_heads_per_partition, self.head_dim, self.scale ) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return ( tensor.view(bsz, seq_len, self.num_heads, self.head_dim) .transpose(1, 2) .contiguous() ) def forward( self, hidden_states: torch.Tensor, ): """Input shape: Batch x Time x Channel""" qkv_states, _ = self.qkv(hidden_states) query_states, key_states, value_states = qkv_states.chunk(3, dim=-1) out = self.attn(query_states, key_states, value_states) attn_output, _ = self.projection(out) return attn_output, None class BlipMLP(nn.Module): def __init__( self, config: BlipVisionConfig, quant_config: QuantizationConfig | None = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.activation_fn = get_act_fn(config.hidden_act) self.fc1 = ColumnParallelLinear( config.hidden_size, config.intermediate_size, bias=True, quant_config=quant_config, prefix=f"{prefix}.fc1", ) self.fc2 = RowParallelLinear( config.intermediate_size, config.hidden_size, bias=True, quant_config=quant_config, prefix=f"{prefix}.fc2", ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states, _ = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states, _ = self.fc2(hidden_states) return hidden_states class BlipEncoderLayer(nn.Module): def __init__( self, config: BlipVisionConfig, quant_config: QuantizationConfig | None = None, prefix: str = "", ) -> None: super().__init__() # fallback to sdpa attention if tp unavailable self.self_attn = BlipAttention( config, quant_config=quant_config, prefix=f"{prefix}.self_attn", ) self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.mlp = BlipMLP(config, quant_config=quant_config, prefix=f"{prefix}.mlp") self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, _ = self.self_attn(hidden_states=hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states class BlipEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`BlipEncoderLayer`]. Args: config: BlipConfig """ def __init__( self, config: BlipVisionConfig, quant_config: QuantizationConfig | None = None, num_hidden_layers_override: int | None = None, prefix: str = "", ) -> None: super().__init__() self.config = config if num_hidden_layers_override is None: num_hidden_layers = config.num_hidden_layers else: num_hidden_layers = num_hidden_layers_override self.layers = nn.ModuleList( [ BlipEncoderLayer( config=config, quant_config=quant_config, prefix=f"{prefix}.layers.{layer_idx}", ) for layer_idx in range(num_hidden_layers) ] ) def forward(self, inputs_embeds: torch.Tensor): hidden_states = inputs_embeds for encoder_layer in self.layers: hidden_states = encoder_layer(hidden_states) return hidden_states class BlipVisionModel(nn.Module, SupportsQuant): config_class = BlipVisionConfig main_input_name = "pixel_values" packed_modules_mapping = {"qkv_proj": ["q_proj", "k_proj", "v_proj"]} def __init__( self, config: BlipVisionConfig, quant_config: QuantizationConfig | None = None, *, num_hidden_layers_override: int | None = None, require_post_norm: bool | None = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.embeddings = BlipVisionEmbeddings(config) self.encoder = BlipEncoder( config=config, quant_config=quant_config, num_hidden_layers_override=num_hidden_layers_override, prefix=f"{prefix}.encoder", ) num_hidden_layers = config.num_hidden_layers if len(self.encoder.layers) > config.num_hidden_layers: raise ValueError( f"The original encoder only has {num_hidden_layers} " f"layers, but you requested {len(self.encoder.layers)} layers." ) # If possible, skip post_layernorm to conserve memory if require_post_norm is None: require_post_norm = len(self.encoder.layers) == num_hidden_layers if require_post_norm: self.post_layernorm = nn.LayerNorm( config.hidden_size, eps=config.layer_norm_eps ) else: self.post_layernorm = None def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: hidden_states = self.embeddings(pixel_values) hidden_states = self.encoder(inputs_embeds=hidden_states) if self.post_layernorm is None: return hidden_states return self.post_layernorm(hidden_states) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ] params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() layer_count = len(self.encoder.layers) for name, loaded_weight in weights: # post_layernorm is not needed in BlipVisionModel if name.startswith("post_layernorm") and self.post_layernorm is None: continue # omit layers when num_hidden_layers_override is set if name.startswith("encoder.layers"): layer_idx = int(name.split(".")[2]) if layer_idx >= layer_count: continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params