#pragma once #include #include #include #include "core/scalar_type.hpp" #include "cutlass/bfloat16.h" #include "cutlass/float8.h" template __global__ void get_group_gemm_starts( int32_t* expert_offsets, ElementAB** a_offsets, ElementAB** b_offsets, ElementC** out_offsets, ElementAccumulator** a_scales_offsets, ElementAccumulator** b_scales_offsets, ElementAB* a_base_as_int, ElementAB* b_base_as_int, ElementC* out_base_as_int, ElementAccumulator* a_scales_base_as_int, ElementAccumulator* b_scales_base_as_int, int64_t n, int64_t k, bool per_act_token, bool per_out_ch) { int expert_id = threadIdx.x; int64_t expert_offset = expert_offsets[expert_id]; a_offsets[expert_id] = a_base_as_int + expert_offset * k; b_offsets[expert_id] = b_base_as_int + expert_id * k * n; out_offsets[expert_id] = out_base_as_int + expert_offset * n; a_scales_offsets[expert_id] = a_scales_base_as_int + (per_act_token ? expert_offset : 0); b_scales_offsets[expert_id] = b_scales_base_as_int + (per_out_ch ? n * expert_id : expert_id); } #define __CALL_GET_STARTS_KERNEL(TENSOR_C_TYPE, C_TYPE) \ else if (out_tensors.dtype() == TENSOR_C_TYPE) { \ get_group_gemm_starts \ <<<1, num_experts, 0, stream>>>( \ static_cast(expert_offsets.data_ptr()), \ static_cast(a_ptrs.data_ptr()), \ static_cast(b_ptrs.data_ptr()), \ static_cast(out_ptrs.data_ptr()), \ static_cast(a_scales_ptrs.data_ptr()), \ static_cast(b_scales_ptrs.data_ptr()), \ static_cast(a_tensors.data_ptr()), \ static_cast(b_tensors.data_ptr()), \ static_cast(out_tensors.data_ptr()), \ static_cast(a_scales.data_ptr()), \ static_cast(b_scales.data_ptr()), out_tensors.size(1), \ a_tensors.size(1), per_act_token, per_out_ch); \ } namespace { void run_get_group_gemm_starts( torch::Tensor const& expert_offsets, torch::Tensor& a_ptrs, torch::Tensor& b_ptrs, torch::Tensor& out_ptrs, torch::Tensor& a_scales_ptrs, torch::Tensor& b_scales_ptrs, torch::Tensor const& a_tensors, torch::Tensor const& b_tensors, torch::Tensor& out_tensors, torch::Tensor const& a_scales, torch::Tensor const& b_scales) { TORCH_CHECK(a_tensors.dtype() == torch::kFloat8_e4m3fn); TORCH_CHECK(b_tensors.dtype() == torch::kFloat8_e4m3fn); TORCH_CHECK(a_scales.dtype() == torch::kFloat32); TORCH_CHECK(b_scales.dtype() == torch::kFloat32); int num_experts = static_cast(expert_offsets.size(0)); bool per_act_token = a_scales.numel() != 1; bool per_out_ch = b_scales.numel() != num_experts; auto stream = at::cuda::getCurrentCUDAStream(a_tensors.device().index()); if (false) { } __CALL_GET_STARTS_KERNEL(torch::kBFloat16, cutlass::bfloat16_t) __CALL_GET_STARTS_KERNEL(torch::kFloat16, half) else { TORCH_CHECK(false, "Invalid output type (must be float16 or bfloat16)"); } } } // namespace