# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from dataclasses import dataclass, fields import pytest import torch import torch.nn.functional as F from vllm.utils.import_utils import has_triton_kernels if not has_triton_kernels(): pytest.skip( "triton_kernels not found, skipping all related tests", allow_module_level=True, ) import triton_kernels.swiglu from triton_kernels.matmul_ogs import FlexCtx, PrecisionConfig from triton_kernels.numerics import InFlexData from triton_kernels.numerics_details.mxfp import downcast_to_mxfp, upcast_from_mxfp from triton_kernels.tensor import FP4, convert_layout, wrap_torch_tensor from triton_kernels.tensor_details import layout from triton_kernels.testing import assert_close from vllm.model_executor.layers.fused_moe.config import FusedMoEQuantConfig from vllm.model_executor.layers.fused_moe.gpt_oss_triton_kernels_moe import ( triton_kernel_moe_forward, ) from vllm.model_executor.layers.utils import shuffle_weight from vllm.utils.math_utils import round_up def deshuffle(w: torch.Tensor): first = w[..., ::2] second = w[..., 1::2] deshuffled = torch.concat((first, second), dim=-1) return deshuffled def init_compute_data(M, K, N, E, a_dtype: str, w_dtype: str, num_warps: int): randbits = [torch.randperm(E) for _ in range(M)] x_list = [ (-1) ** i * ((16384 + ((i * 512) % 4096) + bits).to(torch.int16).view(torch.bfloat16)) for i, bits in enumerate(randbits) ] exp_data = torch.stack(x_list).to(device="cuda") # simulating gate_output (M, E) # create input tensor x = torch.randn((M, K), dtype=torch.bfloat16, device="cuda") w1 = torch.randn((E, 2 * N, K), dtype=torch.bfloat16, device="cuda") w1_bias = torch.randn((E, 2 * N), dtype=torch.bfloat16, device="cuda") w2 = torch.randn((E, K, N), dtype=torch.bfloat16, device="cuda") w2_bias = torch.randn((E, K), dtype=torch.bfloat16, device="cuda") exp_data_tri = exp_data.clone() x_tri = x.clone() w1_tri = w1.clone() w2_tri = w2.clone() w1_bias_tri = w1_bias.clone() w2_bias_tri = w2_bias.clone() w1_bias_tri = w1_bias_tri.to(torch.float32) w2_bias_tri = w2_bias_tri.to(torch.float32) dtype_dict = { "bf16": torch.bfloat16, "fp8_e4m3": torch.float8_e4m3fn, "fp8_e5m2": torch.float8_e5m2, } x = x.to(dtype_dict[a_dtype]).to(torch.bfloat16) if w_dtype != "mx4": # simulate quantization support on reference impl w1 = w1.to(dtype_dict[w_dtype]).to(torch.bfloat16) w2 = w2.to(dtype_dict[w_dtype]).to(torch.bfloat16) # triton moe kernel use transposed shape for matmul w1_tri = w1_tri.transpose(-2, -1) w2_tri = w2_tri.transpose(-2, -1) # shuffle weights w1_tri = shuffle_weight(w1_tri) w1_bias_tri = shuffle_weight(w1_bias_tri) # quant triton_weights x_tri = x.to(dtype_dict[a_dtype]) if w_dtype != "mx4": pytest.skip("NYI") else: # quantize to mx4 # careful on the padding here, the activation padding need to be # multiple of 64, the actual engine is not implemented w1_bottom_pad = round_up(w1_tri.shape[1], 64) - w1_tri.shape[1] w1_right_pad = round_up(w1_tri.shape[2], 128) - w1_tri.shape[2] w2_bottom_pad = w1_right_pad // 2 w2_right_pad = w1_bottom_pad x_pad = w1_bottom_pad w1_tri = F.pad( w1_tri, (0, w1_right_pad, 0, w1_bottom_pad, 0, 0), mode="constant", value=0, ) w2_tri = F.pad( w2_tri, (0, w2_right_pad, 0, w2_bottom_pad, 0, 0), mode="constant", value=0, ) w1_bias_tri = F.pad( w1_bias_tri, (0, w1_right_pad, 0, 0), mode="constant", value=0 ) w2_bias_tri = F.pad( w2_bias_tri, (0, w2_right_pad, 0, 0), mode="constant", value=0 ) x_tri = F.pad(x_tri, (0, x_pad, 0, 0), mode="constant", value=0) w_layout, w_layout_opts = layout.make_default_matmul_mxfp4_w_layout(mx_axis=1) w_scale_layout, w_scale_layout_opts = ( layout.make_default_matmul_mxfp4_w_scale_layout( mx_axis=1, num_warps=num_warps ) ) w1_tri, w1_scale_tri = downcast_to_mxfp(w1_tri, torch.uint8, axis=1) w1 = upcast_from_mxfp(w1_tri, w1_scale_tri, torch.bfloat16, axis=1) w2_tri, w2_scale_tri = downcast_to_mxfp(w2_tri, torch.uint8, axis=1) w2 = upcast_from_mxfp(w2_tri, w2_scale_tri, torch.bfloat16, axis=1) w1_tri = convert_layout( wrap_torch_tensor(w1_tri, FP4), w_layout, **w_layout_opts ) w1_scale_tri = convert_layout( wrap_torch_tensor(w1_scale_tri), w_scale_layout, **w_scale_layout_opts, ) w2_tri = convert_layout( wrap_torch_tensor(w2_tri, FP4), w_layout, **w_layout_opts ) w2_scale_tri = convert_layout( wrap_torch_tensor(w2_scale_tri), w_scale_layout, **w_scale_layout_opts, ) pc1 = PrecisionConfig( weight_scale=w1_scale_tri, flex_ctx=FlexCtx(rhs_data=InFlexData()) ) pc2 = PrecisionConfig( weight_scale=w2_scale_tri, flex_ctx=FlexCtx(rhs_data=InFlexData()) ) # tucuate so the rest can run properly w1 = w1[..., :K, : 2 * N] w2 = w2[..., :N, :K] w1 = deshuffle(w1) w1 = w1.transpose(-1, -2).contiguous() w2 = w2.transpose(-1, -2).contiguous() return ( x, w1, w1_bias, w2, w2_bias, exp_data, x_tri, w1_tri, w2_tri, exp_data_tri, w1_bias_tri, w2_bias_tri, pc1, pc2, ) @dataclass class ModelConfig: num_hidden_layers: int = 36 num_experts: int = 128 experts_per_token: int = 4 vocab_size: int = 201088 hidden_size: int = 2880 intermediate_size: int = 2880 head_dim: int = 64 num_attention_heads: int = 64 num_key_value_heads: int = 8 sliding_window: int = 128 initial_context_length: int = 4096 rope_theta: float = 150000.0 rope_parameters_factor: float = 32.0 rope_ntk_alpha: float = 1.0 rope_ntk_beta: float = 32.0 def swiglu(x, alpha: float = 1.702, limit: float = 1.0): # Note we add an extra bias of 1 to the linear layer x_glu, x_linear = torch.chunk(x, 2, dim=-1) if limit is not None: x_glu = x_glu.clamp(max=limit) out_glu = x_glu * torch.sigmoid(alpha * x_glu) if limit is not None: x_linear = x_linear.clamp(min=-limit, max=limit) return out_glu * (x_linear + 1) def oai_moe_forward( hidden_states: torch.Tensor, # (M, K) w1: torch.Tensor, # (E, 2N) w1_bias: torch.Tensor, # (E, 2N, K) w2: torch.Tensor, # (E, K, N) w2_bias: torch.Tensor, # (E, N) gating_output: torch.Tensor, # (M, E) topk: int, ): # model.py 309:330, assuming gating and norm t = hidden_states experts = torch.topk(gating_output, k=topk, dim=-1, sorted=True) expert_weights = torch.nn.functional.softmax(experts.values, dim=1) expert_indices = experts.indices # MLP #1 mlp1_weight = w1[expert_indices, ...] mlp1_bias = w1_bias[expert_indices, ...] t = torch.einsum("beck,bk->bec", mlp1_weight, t) + mlp1_bias t = swiglu(t, limit=7) # MLP #2 mlp2_weight = w2[expert_indices, ...] mlp2_bias = w2_bias[expert_indices, ...] t = torch.einsum("beck,bek->bec", mlp2_weight, t) t += mlp2_bias # Weighted sum of experts t = torch.einsum("bec,be->bc", t, expert_weights) return t @dataclass class Case: a_dtype: str w_dtype: str @pytest.mark.parametrize( ", ".join(f.name for f in fields(Case)), [ tuple(getattr(case, f.name) for f in fields(Case)) for case in [ # Case(a_dtype="bf16", w_dtype="bf16"), # Case(a_dtype="fp8_e4m3", w_dtype="fp8_e5m2"), Case(a_dtype="bf16", w_dtype="mx4") ] ], ) @pytest.mark.parametrize("num_token", [2]) @pytest.mark.parametrize("tp", [1, 2, 4, 8]) def test_equiv(num_token, a_dtype, w_dtype, tp): M = num_token E = ModelConfig.num_experts K = ModelConfig.hidden_size N = ModelConfig.intermediate_size // tp topk = ModelConfig.experts_per_token ( x, w1, w1_bias, w2, w2_bias, exp_data, x_tri, w1_tri, w2_tri, exp_data_tri, w1_bias_tri, w2_bias_tri, pc1, pc2, ) = init_compute_data(M, K, N, E, a_dtype, w_dtype, num_warps=8) quant_config = FusedMoEQuantConfig.make( w1_bias=w1_bias_tri, w2_bias=w2_bias_tri, w1_scale=pc1, w2_scale=pc2, ) out_triton_monolithic = triton_kernel_moe_forward( hidden_states=x_tri, w1=w1_tri, w2=w2_tri, gating_output=exp_data_tri, topk=topk, renormalize=True, quant_config=quant_config, ) out_triton_monolithic = out_triton_monolithic[..., :K] out_ref = oai_moe_forward( hidden_states=x, w1=w1, w1_bias=w1_bias, w2=w2, w2_bias=w2_bias, gating_output=exp_data, topk=topk, ) assert_close(ref=out_ref, tri=out_triton_monolithic, maxtol=0.025, rmstol=0.005) def test_unit_shuffle(): N = ModelConfig.intermediate_size K = ModelConfig.hidden_size m = torch.randn((K, 2 * N), dtype=torch.bfloat16, device="cuda") x = torch.randn(K, dtype=torch.bfloat16, device="cuda") m_shuffled = shuffle_weight(m) out_ref = x @ m out_ref = swiglu(out_ref, limit=1.0) out = x @ m_shuffled out = triton_kernels.swiglu.swiglu_torch( out, alpha=1.702, precision_config=triton_kernels.swiglu.PrecisionConfig(limit=1.0), ) assert_close(ref=out_ref, tri=out)