# SPDX-License-Identifier: Apache-2.0 import pytest from vllm.config import PoolerConfig from vllm.platforms import current_platform from ...utils import check_embeddings_close @pytest.mark.parametrize( "model", [ # Be careful of the order of models, decoder-only models should be # placed before encoder-only models, otherwise `Qwen2.5-0.5B-Instruct` # case won't pass because gte-Qwen2-1.5B-instruct will cache custom # model code with bidirectional attention. # [Decoder-only] pytest.param("BAAI/bge-multilingual-gemma2", marks=[pytest.mark.core_model]), pytest.param("intfloat/e5-mistral-7b-instruct", marks=[pytest.mark.core_model, pytest.mark.cpu_model]), pytest.param("ssmits/Qwen2-7B-Instruct-embed-base"), # [Encoder-only] pytest.param("BAAI/bge-base-en-v1.5", marks=[pytest.mark.core_model, pytest.mark.cpu_model]), pytest.param("sentence-transformers/all-MiniLM-L12-v2"), pytest.param("intfloat/multilingual-e5-small"), pytest.param("Alibaba-NLP/gte-Qwen2-1.5B-instruct"), # [Cross-Encoder] pytest.param("sentence-transformers/stsb-roberta-base-v2"), ], ) def test_models( hf_runner, vllm_runner, example_prompts, model, monkeypatch, ) -> None: if model == "BAAI/bge-multilingual-gemma2" and current_platform.is_rocm(): # ROCm Triton FA does not currently support sliding window attention # switch to use ROCm CK FA backend monkeypatch.setenv("VLLM_USE_TRITON_FLASH_ATTN", "False") vllm_extra_kwargs = {} if model == "ssmits/Qwen2-7B-Instruct-embed-base": vllm_extra_kwargs["override_pooler_config"] = \ PoolerConfig(pooling_type="MEAN", normalize=False) # The example_prompts has ending "\n", for example: # "Write a short story about a robot that dreams for the first time.\n" # sentence_transformers will strip the input texts, see: # https://github.com/UKPLab/sentence-transformers/blob/v3.1.1/sentence_transformers/models/Transformer.py#L159 # This makes the input_ids different between hf_model and vllm_model. # So we need to strip the input texts to avoid test failing. example_prompts = [str(s).strip() for s in example_prompts] with hf_runner(model, is_sentence_transformer=True) as hf_model: hf_outputs = hf_model.encode(example_prompts) with vllm_runner(model, task="embed", max_model_len=None, **vllm_extra_kwargs) as vllm_model: vllm_outputs = vllm_model.encode(example_prompts) check_embeddings_close( embeddings_0_lst=hf_outputs, embeddings_1_lst=vllm_outputs, name_0="hf", name_1="vllm", tol=1e-2, )