# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import numpy as np import pytest import torch from vllm.platforms import current_platform # Test parameters NUM_ROWS = [1, 32, 2050] TOP_K_VALUES = [2048, 3000] BATCH_SIZE = [1, 2, 2048] NEXT_N = [1, 8] DATA_GENERATION = ["random", "10LSBits"] def create_random_logits( row_starts: torch.Tensor, row_ends: torch.Tensor, dtype: torch.dtype, seed: int, data_generation: str, ) -> torch.Tensor: """Create random logits tensor for testing.""" torch.manual_seed(seed) np.random.seed(seed) # Generate logits with some structure to make testing more meaningful if data_generation == "random": logits = torch.randn( row_starts.shape[0], max(row_ends), dtype=dtype, device="cuda" ) elif data_generation == "10LSBits": top_22_bits_mask = 0xFFFFFC00 last_10_bits_mask = 0x000003FF fixed_top_22_bits = 0x3F900000 # Generate random bits for the last 10 bits random_bottom_bits = torch.randint( 0, 2**10, (row_starts.shape[0], max(row_ends)), dtype=torch.int32, device="cuda", ) # Combine: fixed top 22 bits with random last 10 bits logits_bits = (fixed_top_22_bits & top_22_bits_mask) | ( random_bottom_bits & last_10_bits_mask ) logits = logits_bits.view(dtype) for i, end in enumerate(row_ends): logits[i, end:] = float("-inf") return logits def create_row_boundaries( seq_len: int, vocab_size: int ) -> tuple[torch.Tensor, torch.Tensor]: """Create row start and end indices for testing.""" row_starts = torch.zeros(seq_len, dtype=torch.int32, device="cuda") row_ends = torch.arange(1, seq_len + 1, device="cuda", dtype=torch.int32) return row_starts, row_ends def compare_top_k_results( logits: torch.Tensor, cuda_indices: torch.Tensor, torch_indices: torch.Tensor, row_starts: torch.Tensor, row_ends: torch.Tensor, top_k: int, tolerance: float = 1e-5, ) -> bool: """ Compare results from CUDA top_k_per_row with torch.topk. Both results should be sorted and contain the same top-k elements. """ num_rows = cuda_indices.shape[0] for row_idx in range(num_rows): # Get valid elements using row boundaries row_start = row_starts[row_idx].item() row_end = row_ends[row_idx].item() row_length = row_end - row_start num_valid = min(top_k, row_length) cuda_row_indices = cuda_indices[row_idx][:num_valid].cpu() torch_row_indices = torch_indices[row_idx][:num_valid].cpu() # Compare the sets of indices first cuda_set = set(cuda_row_indices.tolist()) torch_set = set(torch_row_indices.tolist()) if cuda_set == torch_set: continue # Any difference in elements, compare the values logits_row = logits[row_idx] cuda_row_values = [logits_row[i] for i in cuda_row_indices] torch_row_values = [logits_row[i] for i in torch_row_indices] cuda_only_values, torch_only_values = [], [] for idx in cuda_set - torch_set: cuda_pos = (cuda_row_indices == idx).nonzero(as_tuple=True)[0] cuda_only_values.append(cuda_row_values[cuda_pos[0]]) for idx in torch_set - cuda_set: torch_pos = (torch_row_indices == idx).nonzero(as_tuple=True)[0] torch_only_values.append(torch_row_values[torch_pos[0]]) if len(cuda_only_values) != len(torch_only_values): return False if not torch.allclose( torch.tensor(cuda_only_values), torch.tensor(torch_only_values), rtol=tolerance, atol=tolerance, ): return False return True @pytest.mark.parametrize("num_rows", NUM_ROWS) @pytest.mark.parametrize("top_k", TOP_K_VALUES) @pytest.mark.skipif(not current_platform.is_cuda(), reason="This test requires CUDA") @torch.inference_mode() def test_top_k_per_row( num_rows: int, top_k: int, ) -> None: """ Test top_k_per_row. """ torch.set_default_device("cuda:0") # Create test data vocab_size = 20000 row_starts, row_ends = create_row_boundaries(num_rows, vocab_size) logits = create_random_logits(row_starts, row_ends, torch.float32, 42, "random") # Create output tensors indices = torch.empty((num_rows, top_k), dtype=torch.int32, device="cuda") # Run CUDA implementation torch.ops._C.top_k_per_row_prefill( logits, row_starts, row_ends, indices, num_rows, logits.stride(0), logits.stride(1), top_k, ) # Run reference implementation torch_indices = logits.topk(min(top_k, max(row_ends)), dim=-1)[1] mask_lo = torch_indices >= 0 mask_hi = (torch_indices - (row_ends - row_starts)[:, None]) < 0 mask = mask_lo & mask_hi torch_indices = torch_indices.masked_fill(~mask, -1) # Compare results assert compare_top_k_results( logits, indices, torch_indices, row_starts, row_ends, top_k ), "CUDA top_k_per_row_prefill results don't match torch.topk" def _run_top_k_per_row_decode_test( top_k: int, batch_size: int, next_n: int, vocab_size: int, data_generation: str, ) -> None: """ Helper function to run top_k_per_row_decode test with given parameters. """ torch.set_default_device("cuda:0") # Create test data num_rows = batch_size * next_n seq_lens = torch.randint( vocab_size, (batch_size,), dtype=torch.int32, device="cuda" ) row_starts = torch.zeros(num_rows, dtype=torch.int32, device="cuda") row_indices = torch.arange(num_rows, device="cuda") // next_n next_n_offset = torch.arange(num_rows, device="cuda") % next_n row_ends = seq_lens[row_indices] - next_n + next_n_offset + 1 logits = create_random_logits( row_starts, row_ends, torch.float32, 42, data_generation ) # Create output tensors indices = torch.empty((num_rows, top_k), dtype=torch.int32, device="cuda") # Run CUDA implementation torch.ops._C.top_k_per_row_decode( logits, next_n, seq_lens, indices, num_rows, logits.stride(0), logits.stride(1), top_k, ) torch.cuda.synchronize() # Run reference implementation torch_indices = logits.topk(min(top_k, max(row_ends)), dim=-1)[1] mask_lo = torch_indices >= 0 mask_hi = (torch_indices - (row_ends - row_starts)[:, None]) < 0 mask = mask_lo & mask_hi torch_indices = torch_indices.masked_fill(~mask, -1) # Compare results assert compare_top_k_results( logits, indices, torch_indices, row_starts, row_ends, top_k ), "CUDA top_k_per_row_decode results don't match torch.topk" @pytest.mark.parametrize("top_k", TOP_K_VALUES) @pytest.mark.parametrize("batch_size", BATCH_SIZE) @pytest.mark.parametrize("next_n", NEXT_N) @pytest.mark.parametrize("data_generation", DATA_GENERATION) @pytest.mark.skipif(not current_platform.is_cuda(), reason="This test requires CUDA") @torch.inference_mode() def test_top_k_per_row_decode( top_k: int, batch_size: int, next_n: int, data_generation: str, ) -> None: """ Test top_k_per_row with seq_lens tensor. """ vocab_size = 20000 _run_top_k_per_row_decode_test( top_k, batch_size, next_n, vocab_size, data_generation ) @pytest.mark.skipif(not current_platform.is_cuda(), reason="This test requires CUDA") @torch.inference_mode() def test_top_k_per_row_decode_large_vocab_size() -> None: """ Test top_k_per_row_decode with large vocabulary size. """ top_k = 2048 batch_size = 2 next_n = 2 vocab_size = 300000 data_generation = "random" _run_top_k_per_row_decode_test( top_k, batch_size, next_n, vocab_size, data_generation )